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"The Engineer Grapples With  Nonlinear  Problems" was t h e  t i t l e  of t h e  
F i f t e e n t h   J o s i a h  Willard Gibbs Lecture by Theodore von Karman p u b l i s h e d   i n  
August 1940 i n   t h e   B u l l e t i n  of t h e  American  Mathematical   Society.   With  his  
c h a r a c t e r i s t i c   c l a r i t y   a n d   i n s i g h t ,  Von Karman presented  key aspects of non- 
l i n e a r  problems i n  selected f i e l d s  of engineer ing  and c o n c i s e l y   d e s c r i b e d   t h e  
mathemat ics   ava i lab le  to  addres s  t h e m .  I n  May 1956, t h e   e n t i r e  issue of   the 
J o u r n a l  of t he   Aeronau t i ca l   Sc i ences  w a s  comprised  of papers w r i t t e n  by  former 
s t u d e n t s  of Von Karman and dedicated to  him on the   occas ion   o f   h i s   75 th   b i r th -  
day. I n   t h i s   i s s u e  w a s  a paper by F r a n c i s   C l a u s e r   e n t i t l e d  "The Behavior of 
Nonl  inear  Sys terns. " 

We recanmend Von Karman's 1940 paper and Clauser's 1956 paper f o r   t h e i r  
i l l u m i n a t i n g   d i s c u s s i o n s  of fundamental   nonlinear problems i n   e n g i n e e r i n g .  
Both   papers   inc lude   br ie f   t rea tments  of n o n l i n e a r   p r o b l e m s   i n   s t r u c t u r a l   a n d  
sol id  mechanics. Notable advancements,  dominated by the  remarkable   growth 
of canputer  technology,  have  been made i n   t h e s e   f i e l d s   i n   r e c e n t   y e a r s .  
N e v e r t h e l e s s ,   i n   s t r u c t u r a l  and solid mechanics  the  kinds of n o n l i n e a r i t i e s  
and   t he   t heo r i e s   i nvo lved  are d i v e r s e  and canplex  enough to  require l a r g e  
investments   in   computer  resources or t o  p o s e   s i g n i f i c a n t   a n a l y t i c a l   d i f f i c u l -  
ties. F o r t y   y e a r s  after Von Karman's classic Gibbs   Lec tu re ,   eng inee r s   i n  
s t r u c t u r a l  and solid mechanics  continue t o  g r a p p l e   w i t h   n o n l i n e a r  problems. 

A Symposiun on   Canputa t iona l  Methods i n   N o n l i n e a r   S t r u c t u r a l   a n d   S o l i d  
Mechanics was held i n  Washington, D.C., on October 6-8, 1980. NASA Langley 
Research  Center   and  The  George  Washington  Universi ty   sponsored  the symposium i n  
cooperat ion  with  the  Nat ional   Science  Foundat ion,   the   American  Society  of   Civi l  
Engineers ,   and  the  American  Society  of   Mechanical   Engineers .  The purpose of 
the  symposium was to mmmunica te   recent   advances   and   fos te r   in te rac t ion  among 
r e s e a r c h e r s  and p r a c t i t i o n e r s   i n   s t r u c t u r a l   e n g i n e e r i n g ,   m a t h e m a t i c s   ( e s p e c i a l l y  
numer i ca l   ana lys i s ) ,  and  computer  technology. The symposium was o r g a n i z e d   i n t o  
21 sessions wi th  a total of 85 papers. Most of t h e s e  papers are c o n t a i n e d   i n  
the  proceedings:  

Nmr, A h e d  K.; and McCanb, Harvey G., Jr. (eds. ): Canpu ta t iona l  Methods 
in   Nonl inear   S t ruc tura l   and   Sol id   Mechanics .  Pergarnon Press ,  Ltd . ,  1980. 

Topics d i s c u s s e d   i n   t h e  symposium inc luded  

(1) Nonlinear   mathematical   theories   and  formulat ion aspects 

( 2 )  Canpu ta t iona l   s t r a t eg ie s   fo r   non l inea r   p rob lems  

( 3 )  Time i n t e g r a t i o n   t e c h n i q u e s  and  numerical   solut ion  of   nonl inear  
a l g e b r a i c  equations 

(4) Material cha rac t e r i za t ion   and   non l inea r  fracture mechanics 

iii 



(5)  Nonlinear   interact ion  problems 

(6 )  Seismic  response  and  nonl inear   analysis  of reinforced concre te  
structures 

( 7 )  Nonlinear   problems  for   nuclear  reactors 

( 8 )  Crash dynamics and impact problems 

(9 )  Nonlinear problems of f i b r o u s  canposites and  advanced  nonlinear 
a p p l i c a t i o n s  

(1 0 )  Canputer ized symbolic manipulat ion and nonl inear   ana lys i s   sof tware  
sys tems 

Th i s  NASA Conference   Publ ica t ion   pr imar i ly   conta ins  papers p r e s e n t e d   i n  
four   research- in-progress   sess ions  of the  symposiun which were r e s e r v e d   f o r  
r e p o r t i n g   u n f i n i s h e d   r e s e a r c h   f o r  timely communication  of t h e  s ta tus  of t h e  
work. The f i r s t  f i v e  papers i n   t h i s   p u b l i c a t i o n ,  however, are not   research-  
in-progress  papers, but were p r e s e n t e d   i n   o t h e r   s e s s i o n s .  

The included papers are l a r g e l y  as subnitted.  Sane authors  d id  not   adhere 
t o  t h e  NASA p o l i c y  of express ing  a l l  d i m e n s i o n a l   q u a n t i t i e s   i n   t h e   I n t e r n a t i o n a l  
System of Uni t s  (SI). This  requirement  has been  waived,  and a table  of conver- 
s ion   fac tors   be tween U.S. Customary  Units  and SI is provided  on  page  vi i i .  Use 
of trade names or manufacturers '  names does not c o n s t i t u t e  an o f f i c i a l   e n d o r s e -  
ment of such products or manufac turers ,   e i ther   expressed  or implied, by NASA. 

Harvey G. McCanb, Jr. 
Ai-nned K. Noor 
C a n p i l  er s 
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ANALYSIS OF REINFORCED  CONCRETE  STRUCTURES WITH OCCUWNCE 

OF  DISCRl3TE  CRACKS AT ARBITRARY  POSITONS 

J. Blaauwendraad, H.J. Grootenboer 
Rijkswaterstaat, the  Netherlands 

A.L. Bouma, H.W. Reinhardt 
Delft  University  of  Technology,  the  Netherlands 

SUMMARY 

A nonlinear  analysis  of  in-plane  loaded  plates  is  presented,  which  elimi- 
nates  the  disadvantages  of  the  smeared  crack  approach.  The  paper  discusses  the 
elements  used  and  the  computational  method.  An  example  is  shown  in  which  one 
or  more  discrete  cracks  are  dominant. 

1 .  INTRODUCTION 

In  reinforced  and  prestressed  concrete  structures  the  post  cracking  be- 
haviour,  the  collapse  mechanism  and  the  magnitude  of  the  failure  load  are  in 
most  cases  highly  determined  by  the  system  of  cracks  that  develops  in  the 
concrete. It is therefore  not  surprising  that  in  finite  element  programs  for 
the  analysis of the  nonlinear  behaviour of concrete  structures,  besides  the 
modelling of the  constitutive  relations,  considerable  attention  is  devoted 
to the  inclusion  in  these  programs of the  occurrence  of  concrete  cracks. In the 
literature  two  methods of  schematizing  the  cracks  are  to  be  distinguished, 
namely:  a  method  based  on  the  possibility of discrete  cracks along the  bound- 
aries  of  the  elements  and  a  method in which  the  cracks  are  assumed  to  be 
distributed  over  the  element  or  over  parts  thereof.  Each  method  has  certain 
advantages  and  disadvantages.  The  aim of the  reported  study  was  to  develop  a 
model  in  which  the  advantages  of  both  methods  were  combined  (ref. 1). The 
model  has  been  set  up  for  the  analysis  of  two-dimensional  in-plane  loaded 
reinforced  or  prestressed  concrete  structures. In the  model  are  considered 
the  various  types of nonlinear  material  time-independent  and  time-dependent 
behaviour,  the  performance  of  the  boundary  layer  between  steel  and  concrete 
and  the  occurrence of  discrete  cracks  within  the  structure. 

The  model  is  based on the  finite  element  approach.  For  describing  the 
structure  two  types  of  elements  have  been  developed:  a  triangular  thin  plate 
element  for  schematizing  the  concrete.and  a  bar  element  for  describing  the 
reinforcing  steel  or  prestressing  steel  plus  the  bond  zone  with  the  sur- 
rounding  concrete.  Both  these  elements  are  based  on  the  hybrid  method  with 
(what  has  been  called)  natural  boundary  displacements. It is characteristic 
of  these  elements  that  the  stresses  at  their  boundaries are  always in 
equilibrium  with one another  and with  the  internal  loading. 



Besides  taking  account  of  the  discontinuity in the  displacements on each 
side  of  a  crack,  the  model  also  takes  account  of  discontinuity  across  a  crack 
of  the  normal  stresses in the  direction  of  the  crack. The method  of  initial 
strains  is  used  for  dealing  with  the  nonlinear  behaviour  of  the  materials, 
the  displacements  at  the  crack  and  the  slip  of  the  reinforcement. 

The  development  of  this  model,  which  has  been  called  the  MICRO-model, 
forms  a  part  of  the  Dutch  research  project  "Concrete  Mechanics" (in Dutch: 
Betonmechanica). In this  project  concrete  structures  are  studied  along  two 
parallel  lines  of  basic  experiments  and  computational  methods. The subprojects 
for  basic  experiments  concentrate on the  fundamental  behaviour  of  bond  zones 
and on the  phenomenon  of  force  transfer  in  cracks.  The  results  of  this  experi- 
mental  work  is  fed  into  the  subproject  for  computational  methods.  Apart  of 
the  here  described  model  for  two-dimensional  in-plane  loaded  structures,  also 
a  model  has  been  derived  for  the  special  case  of  plane  framed  structures in 
which  linear  elements  are  used  allowing  for  normal  strains,  bending  strains 
and  shear  strains.  Because  of  the  use  of  greater  elements,  this  last  model 
was called the MACRO-model.  This  paper will be restricted  to  the  MACRO-model. 

Discrete  cracks  versus 
smeared-out"  cracks I I  

The  method  with  discrete  cracks: 
- gives  better  insight  into  the  relative  displacements  at  a  crack  and 

- offers  the  possibility  of  describing  the  stress  peaks  and  the  dowel 

- can  take  account  of  the  relationship  between  aggregate  interlock  and 

- is  often  better  able  to  schematize  dominant  cracks  and  their  effect  on 

A  serious  disadvantage  of  this  method  was  that  cracking  was  restricted  to  oc- 
cur  only  along  the  element  boundaries  (ref. 2 , 3 ) .  This  results  in  a  high  de- 
gree  of  schematization  of  the  cracking  pattern  and  considerable  dependence 
on  the  subdivision  into  elements.  Also  in  consequence  of  the  detachment  of  the 
elements  the  system  of  equations  must  each  time  be  re-established  and  inverted 
or  decomposed. 

the  crack  spacing; 

forces  in  the  steel  at  a  crack; 

displacements  at  a  crack; 

behaviour. 

Because  of  these  disadvantages,  in  general,  the  discrete  crack  model  has 
been  abandoned  in  favour  of  the  approach  in  which  a  crack  is  smeared  or  spread 
out  over  a  whole  element  or  over  part  of an element. The crack  is  thus  incor- 
porated  into  the  stiffness  properties  of  the  concrete,  which  becomes  aniso- 
tropic  in  consequence  (refs. 4 , 5 ) .  Its  great  advantage  is  that  cracking  is 
conceived as a  phenomenon  like  plastic  deformation  and  can  therefore  be 
analyzed  by  the  same  methods,  with  which  a  good  deal  of  experience  has  already 
been  gained.  The  disadvantages  of  this  method  are  due  to  "smearing out'' the 
cracks.  Especially  the  assumption  about  the  stiffness  perpendicular  to  the 
crack  in  an  element  with  few  or  no  reinforcement  forms  a  problem.  The  reason 
is  that in reality  this  stiffness  not  only  depends on the  element  and  the 
position  of  the  crack  herein  but  also  on  the  circumstance  if  the  element 
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is  a  link  in  a  series  connection  of  elements  or  a  link in a  parallel  connec- 
tion  of  elements.  With  this  model  the  crack  spacings  and  displacements  at -the 
cracks  are  difficult  to  calculate,  even  if  a  fine-meshed  network  of  elements 
i s  used.  This  has  its  repercussions  on  the  modelling of the  aggregate  inter- 
lock  which  highly  depends on the  displacements  at  the  crack.  ,Whether  these 
drawbacks  constitute  a  serious  objection  will  depend on the  kind of 
structure  to  be  analysed. 

1 .  
In  the  MICRO-model  a  method  of  crack  schematization  is  adopted  which  com- 

bines  the  advantages  of  both  methods  by  treating  cracks  as  (what  they  in 
reality  are)  discrete  material  boundaries  for  which  the  displacements  and  the 
normal  stresses in the  crack  direction  may  be  different  on  both  sides.  These 

tion  and  are  continuous  over  the  element  boundaries. 
1 1  discrete''  cracks  may  pass  through  the  element  mesh  at  any  place in any  direc- 

Hybrid  element  model  and 
natural  boundary  displacements 

The hybrid  element  model  with  natural  boundary  displacements  is  used  for 
the  derivation of the  force-deformation  relations  per  element. In this  model 
an  assumption  is  made  with  regard to the  distribution of the  stresses in the 
element. The  distribution  of  the  displacements  of  the  element  boundaries  is 
likewise  assumed.  This  model  offers  the  following  advantages: 
- the  distribution of the  stresses  in  the  various  types  of  element  can be 
suitably  interadjusted; 

- discontinuous  distribution  of  the  displacements  in  an  element  can  be  taken 
into  account  quite  simply  in  this  model.  Such  discontinuity  occurs  if  a 
crack  passes  through  the  element; 

- the  favourable  experience  previously  gained  with  this  type  of  finite  element 
model  can  be  used; 

- the  model  offers  the  possibility of adding  extra  stress  functions  for  des- 
cribing  special  situations  to  the  stress  functions  already  existing; 

- by  adjusting  the  description of the  displacements of element  boundaries  to 
the  stress  distribution  at  these  boundaries it is  ensured  that  the  condi- 
tions  of  equilibrium  are  exactly  satisfied  at  the  boundaries. The advantage 
of  this  is  that  the  stresses  at  a  section  along  the element.boundaries  are 
always  in  equilibrium  with  the  external  loads. 

The method  of  adjusting  the  description of the  displacements  of  the 
element  boundaries to the  stress  field so that  inter-edge  equilibrium is 
achieved  is also called  the  method  of  natural  boundary  displacements 
(ref. 6 ) .  In this  method we use  for  the  description  of  the  element  boundary 
displacements  a  separate  set  of  degrees  of  freedom  per  element  boundary 
instead  of  the  usually  employed  degrees  of  freedom in  the  element  corners. 
In the  next  chapter  the  characteristics  of  the  developed  elements will  be 
briefly  discussed.  For an extensive  derivation  see  reference 1. 
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2. USED  ELEMENT 

Triangular  plate  element 

The  concrete  is  described  by  triangular  thin  plate  elements.  For  the  un- 
cracked  element we use  per  element  boundary  four  degrees  of  freedom  for  the 
description  of  a  linear  displacement  distribution  in  normal  and  tangential  di- 
rection.  In  the  element  linear  interpolation  functions  are  used  for  the  des- 
cription  of  the  stresses.To  restrict  in  an  element  with  twelve  degrees  of  free- 
dom  the  number  of  stressless  displacement  possibilities  to  the  three  rigid-body 
displacement  modes,  it  is  necessary  to  have  at  least  nine  independent  stress ! 

parameters. A linearly  distributed  stress  field  for  a  thin  plate  which  satis- 
fies  the  internal  equilibrium  conditions  in  every  point  of  the  element  only 
has  seven  independent  stress  parameters. So to  satisfy  the  condition  of  nine 
independent  stress  parameters  the  second  equation  of  Cauchy  which  states  that 

equals Oyx in  every  point  of the  plate,  is  relaxed  into  the  condition  that 
area  integral  per  element  of the  shear  stresses O and O must  be 

XY YX 

Because  the  linear  stress  distribution  per 
presented  by  the  four  stress  resultants  per 
equilibrium  is  achieved. 

element  boundary  is  uniquely  re- 
element  boundary,full  inter-edge 

Figure  2.1  Degrees  of  freedom  of an uncracked  plate  element. 

If a  crack  has  to  occur  in  an  element,  this  crack  is  assumed  to  form, 
in  a  straight  line  from  one  boundary  of  the  element  to  another.  Within  a  crack 
three  additional  degrees  of  freedom  are  introduced,  two  for  the  description  of 
a  linear  varying  crack  opening (u; , u j )  and  one  for  the  description  of  the 
parallel  shift ( u ) .  (See  figs.  2.1  to 2 . 4 . )  

In  the  vicinity  of  a  crack  the  stresses  may  vary  greatly  due  to  dowel  for- 
ces  in  the  rebars  or  bond  stresses  between  rebars  and  concrete. 
To  take  account  of  these  stress  variations  and  the  possibility of a  disconti- 
nuity  at  a  crack  of  the  normal  stress  in  the  crack  direction , the  linear 
stress  field  of  the  uncracked  element  is  extended  for  a  cracked  element  with 
a  stress  field  which  is  discontinuous  across  the  crack. 
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Figure 2.2 Displacement  Figure 2 . 3  Distribution  of  the 
possibilities  at  a  'stresses,  from  the  additional 
crack.  stress  field,  along  the  boundaries 

of  a  plate  element  with  one  crack. 

To Preserve  full  inter-edge  equilibrium  in  a  crack-crossed  element  bound- 
ary it is  necessary  to  add  to  the  linear  displacement  interpolation  a  discon- 
tinuous  displacement  interpolation. This  is  done  per  crack-crossed  element 
boundary  with  the  additional  degrees  of  freedom nuo and Avo. 

n U0 

Figure 2.4 Extra  degrees  of 
freedom  at  cracked  element 
boundaries. 

Figure 2.5 Distribution of the 
stresses,  from  the  additional 
stress  field,  along  the  boundaries 
of  a  plate  element  with  two  cracks. 

In  an  element  a  second  crack  is  permitted  only  if  this  crack  runs  from  the  un- 
cracked  edge  to  the  intersection  of  the  first  crack  and  the  element  boundary 
(see  figure 2.5). Now,the additional  stress  field  is  discontinuous  over  both 
cracks  and we find  additional  degrees  of  freedom  along  all  three  element 
boundaries. 
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Rebar  element 

A linear  bar  element  is  used  for  the  schematization  of  the  embedded  steel 
and  the  properties  of  the  contact  zone  for  bond  between  steel  and  concrete.  The 
distribution  of  the  forces  in  the  bar  element  is  adjusted  for  the  distribution 
of  the  stresses  along  the  boundaries  of  the  triangular  plate  element  with  which 
these  bar  elements  are  to  be  associated.  In  the  uncracked  plate  element  a  linear 
stress  distribution  has  been  adopted . So the  shear  stress T along  the  rebar 
and  the  normal  stress 0 are  also  linear,  which  corresponds  to  a  quadratic 
distribution  for  the  normal  force (F) and  shear  force ( S )  in the  bar  element. 
The  distribution  of  the  shear  force  in  an  element  has  been so chosen  that  the 
average  shear  force  is  always  zero.  This  ensures  that  the  bending  moments  in 
the  bar  remain  small  and  that  they  are  zero  at  the  ends  of  the  bar.  It  is  still 
a  point  of  discussion  if  this  is  permitted  for  all  situations. 

ment  modes  to  three.  Because  of  the  small  influence of the  shear  flexibility 
on  the  structural  behaviour  it  seems  to  be an allowable  assumption. 

This  assumption  was  necessary  to  restrict  the  number  of  stressless  displace- 

i‘ 0 1  2s 0 O l  0 

S S2 0 

0 0 z2-3s2 

-6s 2 2-6s 

Stress  interpolation  for  uncracked  rebar  element; s is 
along  the  element  edge  and Z the  length  of  the  edge 

the  coordinate 

In  expectation  of  the  results  of  the  other  study  on  the  real  properties 
of  the  boundary  layer  the  constitutive  equations  for  the  combined  steel/ 
boundary  layer  element  are  taken  as 

= 

E 
2 
AE 
0 
0 
0 

- 0 

0 
0 

0 

0 
1 
D 
- 

0 

- :j 1 

B 

where: E strain  of  the  steel 
A - slip  in  boundary  layer 
y l  deformation  in  steel  due  to  shear  force 
A - indentation  of  boundary  layer 

cross-sectional.  area  of  steel 
E = modules  of  elasticity  of  steel 
X = elastic  stiffness  of  boundary  layer  with  respect  to  slip 
D = dowel  rigidity  of  steel 
B = elastic  stiffness  of  boundary  layer  with  respect  to  inden- 

tation 
The  displacements  at  the  element  boundaries  are  described  with  the  aid  of 

the  displacement  quantities u and ‘ij‘ along  the  outside  of  the  boundary  layer 
and  the  displacements u and 71 at  the  outer  ends  of  the  steel  bar. 

- 
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. *  , ""...?: the  plate  element  while  the  second  set  provides  for  the  continuity  of  the  nor- 

.I .e. , If  the  bar  element is intersected  by  a  crack,  then  -as  in  the 

!:%.I extra  fields.  These  fields  are  compatible  with  the  extra  stresses  and  displace- 

f , . .  The  first  set  of  degrees  of  freedom  corresponds  with  the  degrees  of  freedom  of 
).,. 

. .  \ -  mal  and  shear  force  over  the  length  of  the  reinforcement. 
~. 

b- .. 
,,,,,-.,, element-  the  stress  functions  and  displacement  function  are  extende  $late  by  adding 

?J.$;w* 

?.? (; I- ments  used in *the  plate  element. 

I I J 

0 

z F 
Figure 2 . 6  Degrees  of  freedom  of Figure 2.7 Extra  stress  fields  and 

an uncracked  bar  element. degrees of freedom  in  a  bar 
element  intersected  by  a  crack. 

3 .  COMPUTATIONAL  METHOD 

The  finite  element  stiffness  relations  and  equations  were  derived  by  using 
a  Galerkin  approach  for  the  kinematic  relations  and  the  equilibrium  conditions 
(see  -reference 1 ) .  This  results  for  a  structure  without  any  cracks  in  the  next 
set  of  equations: 

s_vo = k + A g  - Bg I 

Herein v o  are  the  degrees  of  freedom, k represents  the  applied  load, E' is 
the  sum  of all initial  strains  and q is  the  volume  load. In the  method  of 
analysis  envisaged  in  the  MICRO-model,  the  strains  are  split  up  into an elastic 
part  and  an  initial  part. The elastic  strains  are  those  which  would  occur  if 
the  material  displayed  ideal  linearly  elastic  behaviour.  The  initial  strains 
are  used  to  account  for  all  nonlinearities  such as plastic  deformation,  creep, 
shrinkage,  etc.  When  a  load  increment  is  applied  the  set  of  equations  is 
solved  iteratively  by  adjusting  the  initial  strains  until  all  criteria  of 
nonlinearity  are  fulfilled  to  a  certain  accuracy. 
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Herein v are  the  number  of  degrees  of  freedom on the  crack  faces (vs.) and V' 
the  additional  degrees  of  freedom  on  the  element  boundaries  at  the  point  of  in- 
tersection  with  a  crack. 
The  split  up  of  the  equations  in  two  sets  is  done  to  avoid  the  alteration  of 
the  origional  system  matrix S and  the  renumbering  of  the  degrees  of  freedom 
V' . During  the  iterative  solution  procedure  both  sets  of  equations  are  solved 
in sequence. In this  procedure we calculate ,uo from  the  first  set  of  equations 
using  for  the  additional  stress  parameters 6 the  value  from  the  preceding 
iteration.  In  each  iteration  the  initial  strains &I and  the  internal  crack 
displacements vcr are  adjusted  to  the  criteria  of  nonlinearity  c.q.  the 
stress  conditions  for  a  crack. 
To  take  into  account  the  internal  stress  redistribution  due  to  a  crack,  one 
element  crack  at  a  time  is  allowed  to  occur.  Only when  the  normal  stresses  on 
the  crack  surfaces  have  become  sufficiently low,  can  another  cracked  element 
occur .. 
Each  time  when  a  new  crack is formed  the  matrix  has  to  be  formed  and  de- 
composed  again. 
Because  the  bandwidth  of  this  matrix  stays  very  small  this  requires  much  less 
time  than  a  reformation  and  decompositon  of  matrix s would  take. 
To  decide  when  an  element  is  cracked  and  to  determine  the  direction  of  the 
crack we use  the  average  stresses  over an element.  When  these  stresses  are  in 
the  range  in  which  the  crack  Criterion  is  valid  and  supercedes  the  criterion 
more  than  will  occur  in  other  elements,  a  crack  is  assumed to form  (with  the 
restriction  that  the  normal  stresses  on  the  existing  crack  faces  are  small 
enough). A crack  is  placed  through  the  centre  of  the  triangular  element,  ex- 
cept  if  a  crack  already  ends on the  boundary  of  the  element. In that  case  the 
new  crack  Troceeds  from  this  existing  crack. 
In  reality  there  is  a  local  stress  peak  near  the  tip  of  a  crack.  This  causes 
further  spreading  of  a  crack,  even  if  the  average  stresses  in  the  vicinity 
thereof  -apart  from  the  stress  peaks-  are  below  the  cracking  criterion.  In  the 
MICRO-model  these  highly  localized  stress  fields  are  not  included.  The  effect 
that, in an  element  adjacent  to  the  end  of  an  existing  crack,  a  crack  will 
develop  at  lower  average  stresses  than  it  would  if  there  were  no  cracks  pre- 
sent,  is  here  dealt  with  by  reducing  the  cracking  criterion  for  these  elements. 
The  calculations  that  have  been  performed  show  a  reduction  to  about 0.7 to  be 
satisfactory. A crack,  once  it  has  been  introduced  into  the  model,  remains  in 
existence.  The  procedure  does  however  take  account  of  the  possibility  that,  on 
further  loading  or  unloading  the  structure, it may  occur  that  a  crack  closes 
up  again  by  compression,  but  as  soon  as  tensile  stresses  act  across  a  closed 
crack,  the  latter  opens  again.  Transfer  of  compressive  stresses  across  a  crack 
is  possible  only  for  zero  crack  width. 

cr 
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for  determining  the  displacements  in  the  cracks  and  the  initial  strain  for  the 
2lasto-plastic  materials  a  fictitious  visco-plastic  model  is  used.  By  doing 
this  the  iteration  process  can  be  conceived  as  a  fictitious  creep  process  with 
a  time  interval  At  between  each  two  successive  iterations  and  a  loading  of 
the  viscous  element  equal  to  the  unbalanced  stresses (Aa) . Per  iteration  the 
increase  in  the  internal  crack  displacements  or  initial  strains  is 

AvcR (AE') = KAa 

To  ensure  that  the  iteration  process  is  stable  the  value  of K must  not  be 
taken  too  large  (see  reference 7). The  number  of  iterations  needed  per  load 
increment  is  highly  influenced  by  the  number  of  cracks  present  in  the  struc- 
ture.  In  order  to  speed  up  the  iteration  pxocess,  whenever  a  number  of  cracks 
have  formed,  the  system  matrices S and S are  changed in order  to  take  into 
account  the  condition  that  the  normal  stresses  on  the  faces  of  open  cracks  must 
become  zero. 

4 .  EXAMPLE  OF  REINFORCED BEAM WHICH  FAILS  IN  SHEAR 

After  several  calculations  in  which  the  MICRO-model  had  proven  its  ability to 
simulate  bending  failure  (see  reference I ) ,  a  reinforced  beam  which  fails  in 
shear  was  analysed  with  the  model.  This  beam  is  one  of  a  series  of  beams  which 
were  tested  in  the  Stevin  Laboratory  of  the  Delft  University  of  Technology  in' 
the  Netherlands in  a  program  of  research  to  investigate  the  influence  of  beam 
depth  and  crack  roughness  on  the  shear  failure  load  (ref. 8). The  beam  was 
loaded  as  shown  in  figure 4.1.  

2160 mm L 1000. 2 160 
- 

L _  J- 550. 
T T T 

Figure 4.1 Shape  and  manner of loading  of  tested  beam. 

On  account  of  symmetry  of  the  structure,  the  boundary  conditions  and  the 
loading, it was  sufficient to confine  the  analysis  to  one  half  of  the  struc- 
ture.  The  network  of  elements,  the  restraints  and  support  and  the  external 
loading  of  this  half  structure  have  been  shown  in  figure 4.2. 

In  the  experiment  as  well  as  in  the  analysis  abrupt  failure  occured,  caused  by 
crushing  of  the  concrete  at  the  tip  of  an  inclined  (shear)  crack.  At  failure 
the  stresses  in  the  rebars  were  still  below  the  yield  stress. 
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Figure 4.2 Network  of  element. 

The  experimentally  determined  failure  load  and  the  failure  load  found  from  the 
analysis  were  very  close  to  each  other  (112,lkN  and  112,4kN). The load  deflec- 
tion  curves  for  the  experiment  and  the  analysis  are  given  in  Fig.  4.3. 
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Figure 4.3  Load-deflection  diagram. 

It follows  from  the  load-deflection  curves  that  the  analysis  leads  to  a  some- 
what  lower  stiffness  than  was  registered  in  the  experiment.  An’  explanation?  for 
this  lower  stiffness  may  be  a  too  low  tensile  strength  for  the  concrete  in  the 
analysis,  which  results  in  the  premature  occurrence  of  cracks  and  a  bend  in  the 
load-deflection  curve  at  a  lower  value  of  .the  load  than in the  test. The maxi- 
mum  bond  stress  between  steel  and  concrete  may  have  been  chosen  too  low  as  well. 

. .. . .  

. ,  

. .. 

Fig. 4.4 shows  the  crack  patterns,  just  before  failure,  according to experiment 
and  analysis. For  convenience  of  comparison  the  reflection  of  the  right  part 
of  the  beam  has  been  displayed  in  this  figure. 
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Figure 4 . 4  Crack  pattern  experiment  and  analysis. 
It can be  seen  from  these  crack  patterns  that  the  beam  fails  due  to an inclined 
shear  crack in the  experiment.  This  inclined  crack  was  also  found in the 
analysis. In fact  there  is  a  very  good  agreement  between  the  crack  patterns  of 
the  test  and  the  analysis.  Although  not  much  information  about  the  width  of  the 
cracks in  the  experiment  is  available,  it  seems  that in the  analysis  somewhat 
larger  crackwidths  were  found  than in reality.  This  corresponds with  the 
smaller  stiffness  as  discussed  above  and  can  also  be  the  result  of  a  slightly 
low  value  for  tensile  strength  of  concrete  and  maximum  bond  stress. 

5. SUMMARY AND  CONCLUSIONS 

A finite  element  program  has  been  presented  for  the  analysis  of  two-dimensional 
in-plane  loaded  concrete  structures.  The  program  makes  use  of  seperate  elements 
for  the  description  of  the  concrete  and  the  rebars  including  the  bond  zone  with 
the  surrounding  concrete.  When  cracks  occur  they  are  handled  as  being  discrete. 
Displacements  and  stresses  may  be  discontinuous  across  a  crack.  Cracks  may  pass 
through  the  finite  element  mesh  at  any  place  in  any  direction  and  are  continu- 

.ous over  the  element  boundaries. 
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The  elements  are  based  on  the  hybrid  method  with  natural  boundary  displacements, 
resulting  in  stresses  at  the  inter-element  boundaries  which  are  always  in  equi- 
librium  with  one  another  and  with  the  external  loading.  The  model  takes  care of 
the  different  types of nonlinear  material  behaviour.  Comparison  of  the  res.ults 
of  experiments  with  the  results of analyses shows that  the  model  is  capable of 
obtaining a good  prediction  of  the  deformation,  crack  pattern,  crack  widths, 
failure  load  and  internal  stress  distribution of concrete  structures  under 
in-plane  static  loading. 
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COMPUTATIONAL  MODELS  FOR  THE  NONLINEAR ANALYSIS 

OF REINFORCED  CONCRETE  PLATES 

E. H in ton ,  H.H. Abde l  Rahman and M.M. Huq 

U n i v e r s i t y   C o l l e g e   o f  Swansea 

SUMMARY 

I A f i n i t e   e l e m e n t   c o m p u t a t i o n a l   m o d e l   f o r   t h e   n o n l i n e a r   a n a l y s i s   o f  
r e i n f o r c e d   c o n c r e t e   s o l i d ,   s t i f f e n e d   a n d   c e l l u l a r   p l a t e s   i s   b r i e f l y   o u t l i n e d .  
Typ ica l l y ,   M ind l i n   e lemen ts   a re   used   t o   mode l   t he   p la tes   whereas   eccen t r i c  
T imoshenko  e lements  are  adopted  to   represent   the beams. The l a y e r i n g  
techn ique,  common i n   t h e   a n a l y s i s   o f   r e i n f o r c e d   c o n c r e t e   f l e x u r a l   s y s t e m s , i s  
i n c o r p o r a t e d   i n   t h e   m o d e l .  

INTRODUCTION 

The p r e s e n t   s t u d i e s   w e r e   m o t i v a t e d   b y   t h e   n e e d   t o   d e v e l o p   f i n i t e   e l e m e n t  
c o m p u t a t i o n a l   m o d e l s   s u i t a b l e   f o r   t h e   e f f i c i e n t  and a c c u r a t e   n o n l i n e a r  
a n a l y s i s   o f   r e i n f o r c e d   c o n c r e t e   b r i d g e   d e c k s   a n d   f l e x u r a l   s y s t e m s .   I n  
p a r t i c u l a r   s o l i d  as w e l l  a s   s t i f f e n e d  and c e l l u l a r   p l a t e s   a r e  o f  i n t e r e s t  and 
t h e   f u l l   l o a d - d i s p l a c e m e n t   h i s t o r y   i s   r e q u i r e d .  

Prev ious   s tud ies   have  genera l l y   been  based on K i r c h h o f f   p l a t e  and  Eu le r -  
B e r n o u i l l i  beam r e p r e s e n t a t i o n   a n d  one n o v e l   f e a t u r e   o f   t h e   p r e s e n t   s t u d i e s  
i s   t h e  use o f  M ind l in   p la te   and  T imoshenko beam t h e o r i e s .   A p a r t   f r o m   t h e   f a c t  
t h a t   t r a n s v e r s e   s h e a r   d e f o r m a t i o n   e f f e c t s   a r e   t h e n   a u t o m a t i c a l l y   t a k e n   i n t o  
account ,   the   use   o f   M ind l in /T imoshenko  mode ls   a l lows  the   adopt ion   o f  C ( O )  

r a t h e r   t h a n  C ( I 1  f i n i t e   e l e m e n t s   i n   t h e   d i s c r e t i s a t i o n   p r o c e s s .  

I n   t h e   n o n l i n e a r   a n a l y s i s  o f  r e i n f o r c e d   c o n c r e t e   p l a t e s  it i s   i m p o r t a n t  
t o   a l l o w  for t h e   g r a d u a l   s p r e a d   o f   c r a c k i n g  and y i e l d i n g   o f   t h e   c o n c r e t e   o v e r  
t h e   p l a t e   t h i c k n e s s   a s   w e l l   a s   t h e   y i e l d i n g   o f   t h e   s t e e l   i n   t h e   r e i n f o r c e m e n t .  
To c a t e r   f o r   t h e s e   e f f e c t s   t h e   w e l l - k n o w n   l a y e r e d   a p p r o a c h   i s   a d o p t e d .   T e n s i o n  
s t i f f e n i n g ,   w h i c h  will b e  d e s c r i b e d   l a t e r ,   i s   i n c l u d e d   i n   t h e   c o n c r e t e   m o d e l  
and va r ious   un load ing   cu rves   a re   cons ide red .  As w e l l  as p r o v i d i n g  a b e t t e r  
r e p r e s e n t a t i o n   o f   t h e   r e i n f o r c e d   c o n c r e t e   b e h a v i o u r   d u r i n g   c r a c k i n g ,   t e n s i o n  
s t i f f e n i n g   a p p e a r s   t o  have a b e n e f i c i a l   e f f e c t  on t h e   n u m e r i c a l   s t a b i l i t y   o f  
t h e   n o n l i n e a r   s o l u t i o n  scheme. 

The au tho rs   have   success fu l l y   expe r imen ted   w i th  a v a r i e t y   o f   n o n l i n e a r  
s o l u t i o n  schemes. I n   t h e   p r e s e n t   c o n t e x t ,   e x p e r i e n c e   p o i n t s   t o   t h e   u s e   o f  
e i t h e r   t h e   Q u a s i - N e w t o n   m e t h o d   w i t h   l a r g e   l o a d   i n c r e m e n t s   a n d  a f i n e  con- 
ve rgence   t o le rance  o r  t h e   i n i t i a l   s t i f f n e s s  method w i t h   s m a l l   l o a d   i n c r e m e n t s  
and a coarser   convergence  to le rance.  The resu l t s   quo ted   he re   have   been  
o b t a i n e d   u s i n g   t h e   i n i t i a l   s t i f f n e s s   m e t h o d   w i t h   s m a l l   l o a d   i n c r e m e n t s   a f t e r  
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i n i t i a l  c r a c k i n g . h a s   o c c u r r e d   a n d  a coarse c o n v e r g e n c e   t o l e r a n c e  (1%) on t h e  
d i s p l a c e m e n t s   n o r m .  

Also q u o t e d  i n  t h i s   p a p e r  are  resul ts  f rom a numerical  e x p e r i m e n t   w i t h  a 
t e n t a t i v e  c e l l u l a r  p l a t e   m o d e l  based on a b e a m - p l a t e   r e p r e s e n t a t i o n .  A l a y e r e d  
b e a m   m o d e l s   t h e  webs w h e r e a s  a l a y e r e d   p l a t e   w i t h  zero r i g i d i t y  i n  t h e   v o i d  
reg ion  i s  u s e d  t o  model t h e   f l a n g e s .   T h e  t r ansve r se  s h e a r   r i g i d i t y  o f  t h e  
p l a t e  i n  t h e   p l a n e   p e r p e n d i c u l a r  t o  v o i d s  i s  s u i t a b l y   m o d i f i e d .   F o r   c y l i n d r i c a l  
v o i d s   t h e   b e a m s   h a v e  v a r i a b l e  w i d t h  o v e r  t h e  c ros s - sec t ion .  

The  b a s i c  f o r m u l a t i o n  i s  now d e s c r i b e d  i n  a l i t t l e  more d e t a i l .  

B A S I C  FORMULATION 

M a i n   a s s u m p t i o n s   i n  T a b l e  I t h e   m a i n  f ea tu re s  o f  t h e   M i n d l i n   p l a t e  fo rmul -  
a t i o n  a r e  i n d i c a t e d .  (NB: T h e   T i m o s h e n k o  beam f o r m u l a t i o n ,   w h i c h  i s  b a s e d  on 
similar c o n c e p t s ,  i s  o m i t t e d . ]   I n   t h e   u s u a l   M i n d l i n   p l a t e   r e p r e s e n t a t i o n  
i n t e g r a t i o n   t h r o u g h   t h e   p l a t e   t h i c k n e s s  i s  p e r f o r m e d   e x p l i c i t l y   p r i o r  t o  d i s -  
c r e t i s a t i o n   a n d   t h e r e f o r e   t h e   p r e s e n t   m o d e l  i s  r e a l l y  a d e g e n e r a t e d  3D m o d e l  
w i t h   r e s t r i c t e d  ( f l a t 1  g e o m e t r y .   T h e   m a i n   a s s u m p t i o n  i s  t h a t  normals t o  t h e  
p l a t e   m i d s u r f a c e  remain s t r a i g h t   b u t   n o t   n e c e s s a r i l y   n o r m a l  a f t e r  d e f o r m a t i o n .  
T h u s   t h e   d i s p l a c e m e n t s   u ,  v a n d  w a t  a n y   p o i n t   i n   t h e   p l a t e   w i t h   c o o r d i n a t e s  
( x , y , z l  can b e   e x p r e s s e d  a s  

w h e r e  u  v a n d  w a r e  t h e   d i s p l a c e m e n t s  a t  t h e   p l a t e   m i d s u r f a c e   ( x y   p l a n e 1  

i n   t h e   x , y   a n d  z d i r e c t i o n s   r e s p e c t i v e l y   a n d  8 a n d  8 a r e  t h e   r o t a t i o n s  o f  

t h e  normal i n   t h e   x z   a n d   y z   p l a n e s   r e s p e c t i v e l y .  

0' 0 0 

X Y 

T h e   s t r a i n - d i s p l a c e m e n t   r e l a t i o n s h i p s  may t h e r e f o r e   b e   e x p r e s s e d  a s  

+ 

i n  w h i c h   t h e   m e m b r a n e   s t r a i n s  E = 

t h e   f l e x u r a l  s t r a i n s  + = [ - e x , x ,  - e , - ( e  .+ e ] l T  

a n d   t h e   s h e a r   s t r a i n s  - e , w  

-m l U o , x ,  v o , y '   u o , y  -k v 1 '  
0 , x  

Y Z Y  x J Y  Y , X  

T 
s E = b o , x  x 0 , y  - e y l  

a n d   w h e r e  u = a u o / a x  e t c .  
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E l a s t o - p l a s t i c   b e h a v i o u r  of concrete Concrete  i s  i d e a l i s e d  as  a n  e l a s t i c -  
p e r f e c t l y   p l a s t i c  material  i n  u n i a x i a l  c o m p r e s s i o n .   T h e   b e h a v i o u r  o f  concrete 
i n  b i a x i a l  stress s t a t e s  i s  d e s c r i b e d   b y  an i dea l i s ed  v e r s i o n  of  t h e   f a i l u r e  
e n v e l o p e   o b t a i n e d   b y   K u p f e r  e t  a l .  (Ref.11. A Von Mises f a i l u r e  surface 
i s  u s e d  i n  t h e  b i a x i a l  c o m p r e s s i o n   z o n e .  See a l s o  reference 2 .  Concrete 
w h i c h   h a s   y i e l . d e d  can s u s t a i n   c o m p r e s s i v e  s t r a ins  smaller t h a n  a l i m i t i n g  
s t r a i n  However, when t h e  concrete r e a c h e s   t h i s   s t r a i n  i t  i s  a s s u m e d  
t o  c r u s h .   T h e   c r u s h i n g  surface a d o p t e d   h e r e  i s  g i v e n  as  

C ( E )  = € 2  - E  E + E 2  + " y  3 - E  = o  
X X Y  y 4 x y  c u  

w h e r e  E a n d  E are  t h e   s t r a i n s   i n  x a n d  y d i r e c t i o n s  and y i s  t h e   s h e a r  
s t r a i n .  Y XY X 

(31 

I n  t e n s i o n ,   t h e  concrete i s  a s s u m e d  to b e h a v e   e l a s t i c a l l y   u n t i l   t h e  
t ens i le  s t r e n g t h  I f ; )  i s  r e a c h e d .   T h e   c o n c r e t e   t h e n   c r a c k s  i n  a d i r e c t i o n  
o r t h o g o n a l  t o  t h e  stress d i r e c t i o n   a n d  loses s t r e n g t h .  An u n l o a d i n g   c u r v e  i s  
a s s u m e d   t o   a c c o u n t  f o r  t e n s i o n   s t i f f e n i n g  i n  t h e   c r a c k e d   c o n c r e t e .   T h e  stress 
l e v e l   i n   t h e   c r a c k e d  concrete  i s  i n t e r p o l a t e d   u s i n g   t h e   t e n s i o n   s t i f f e n i n g  
c u r v e   d e p e n d i n g   o n   t h e   d e g r e e  o f  s t r a i n i n g   i n   t h e  concre te .  C o n c r e t e   c r a c k e d  
i n   o n e   d i r e c t i o n  i s  a s s u m e d  t o  h a v e   u n i a x i a l   p r o p e r t i e s   i n   t h a t   d i r e c t i o n   o n l y  
C o n c r e t e   c r a c k e d   i n  two d i r e c t i o n s  i s  a s s u m e d  t o  l o s e  a l l  of i t s  s t r e n g t h .  

T h e   c o n s t i t u t i v e  r e l a t i o n s  o f  t h e  concrete a re  c o n t i n u o u s l y   u p d a t e d  
a c c o r d i n g  t o  t h e  stress s t a t e  i n  t h e  concrete .  However ,  i t  m u s t  be n o t e d   t h a t  
t h e   s h e a r   r i g i d i t i e s   a l w a y s   r e t a i n   t h e i r  e l a s t i c  v a l u e s .   T h e   c o n s t i t u t i v e  
r e l a t i o n s   c a n  a l s o  be w r i t t e n   i n   p a r t i t i o n e d   f o r m   b y   s e p a r a t i n g   o u t   t h e  
m e m b r a n e - f l e x u r e   a n d   s h e a r   s t r a i n   e n e r g y  terms. 

Y i e l d i n g  o f  s t ee l  The s t ee l  r e i n f o r c e m e n t  i s  s m e a r e d   i n t o  s t ee l  l a y e r s   w h i c h  
a r e  a s s u m e d  t o  b e   i n  a s t a t e  o f  u n i a x i a l   t e n s i o n  o r  c o m p r e s s i o n .  When t h e  
l o n g i t u d i n a l  stress e x c e e d s   t h e   p r o p o r t i o n a l i t y  limit, t h e  s t e e l  s tar ts  t o  
y i e l d .  S t r a i n  h a r d e n i n g  o f  t h e  s t e e l  c a n   b e   i n c l u d e d  i f  t h e   s t r a i n   h a r d e n i n g  
p a r a m e t e r ,  H '  i s  k n o w n .   T h e   c o n s t i t u t i v e   r e l a t i o n  f o r  y i e l d e d  s t e e l  i s  
g i v e n  a s  

r 1 

i n   w h i c h  u a n d  E a r e  t h e  stress a n d   s t r a i n   i n  s t e e l ,  E i s  t h e   Y o u n g ' s  

M o d u l u s   a n d  u i s  t h e   y i e l d  stress. 

Slab-beam i d e a l i s a t i o n   T h e  f i r s t  s t e p   i n   t h e   a n a l y s i s  o f  a s l a b - b e a m   s y s t e m  
s u c h  a s  t h e   o n e   s h o w n  i n  f i g u r e  1 i s  t o  d i s c r e t i z e   t h e   s t r u c t u r e   i n t o  a 
s u i t a b l e  number  o f  p l a t e   a n d  beam e l e m e n t s .   I n  o r d e r  t o  s i m p l i f y   t h e   a n a l y s i s ,  
t h e   s t i f f e n e r s   m u s t  be a t t a c h e d   a l o n g   t h e   m e s h   l i n e s  o f  t h e   p l a t e   e l e m e n t s .  

S S 

Y 

T h e   s e l e c t i ' v e l y   i n t e g r a t e d ,   i s o p a r a m e t r i c   9 - n o d e  Heterosis e l e m e n t  
CRef.31 i s  u s e d  t o  model t h e   p l a t e .  A h i e r a r c h i c a 1 , f o r m u l a t i o n  i s  a d o p t e d  
t o  r e p r e s e n t  a l l  degrees o f  f r e e d o m .   T h u s   t h e   s h a p e   f u n c t i o n s  N i n   T a b l e  I 

"i 
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are  c o n s t r u c t e d  as  f o l l o w s :  

(e  l 
N1 . .. t o  N8 le '  are  t h e   8 - n o d e   S e r e n d i p i t y   s h a p e   f u n c t i o n s   a n d  N [ e l  

9 
i s  t h e   b u b b l e   s h a p e   f u n c t i o n  (1-E21 (1-n21 assoc ia ted  w i t h  the g t h   i n t e r n a l  

a 
"8 

are  t h e  vec tors  o f  d i s p l a c e m e n t s  a t  n o d e s  1 t o  8 o n   t h e   b o u n d a r y  o f  t h e  

e l e m e n t  and a is t h e   v e c t o r  o f  t h e  degrees o f  freedom a t  t h e   h i e r a r c h i c a l  

c e n t r a l   n o d e  9 .  T o   o b t a i n   t h e   d i s p l a c e m e n t  v e c t o r  a t  n o d e  9 t h e   f o l l o w i n g  
e x p r e s s i o n  i s  u s e d  

"9 

T h e   6 - n o d e   S e r e n d i p i t y   r e p r e s e n t a t i o n   c a n   b e   o b t a i n e d  i f  a l l  d e g r e e s  o f  
f r e e d o m  a t  n o d e  9 a r e  c o n s t r a i n e d  t o  zero .  If t h e y  are a l l  l e f t  f ree ,  a 
9 - n o d e   L a g r a n g i a n   r e p r e s e n t a t i o n  i s  o b t a i n e d .  For  t h e  Heterosis t y p e   r e p -  
r e s e n t a t i o n ,   o n l y   t h e   h i e r a r c h i c a l  l a t e r a l  d e f l e c t i o n  a t  n o d e  9 i s  r e s t r a i n e d  
t o  z e r o  a n d  (51  i s  u s e d  t o  i n t e r p r e t   d i s p l a c e m e n t s  a t  n o d e  9 .  

T h e   3 - n o d e   i s o p a r a m e t r i c   T i m o s h e n k o  beam e l e m e n t  i s  a d o p t e d  f o r  t h e  beams. 
T h e   r e a d e r   s h o u l d   c o n s u l t   r e f e r e n c e  141 f o r  f u r t h e r  d e t a i l s  r e g a r d i n g   t h i s  
e l e m e n t .  Beam e l e m e n t s   c a n   b e   l o c a t e d   a l o n g   t h e   m e s h   l i n e s  o f  t h e   p l a t e  
e l e m e n t s .   T h e   p r o p e r t i e s  o f  e a c h   e l e m e n t  are c a l c u l a t e d  f irst  i n   t h e   l o c a l  
d i r e c t i o n   a n d   t h e n   t r a n s f o r m e d   t o   t h e  g l o b a l  c o o r d i n a t e  system. 

S i n c e   t h e   s t i f f e n e r   e l e m e n t  i s  a s s u m e d  t o  be m o n o l i t h i c a l l y   c o n n e c t e d  t o  
t h e   p l a t e ,   c o m p a t i b i l i t y  of d e f o r m a t i o n   a l o n g   t h e   j u n c t i o n   l i n e   b e t w e e n   t h e  
b e a m   a n d   t h e   p l a t e  i s  e n f o r c e d   s i n c e  a r e l a t e d   s y s t e m  o f  d i s p l a c e m e n t   f u n c t i o n s  
i s  u s e d  f o r  t h e  p l a t e   a n d  beam e l e m e n t s .  As t h e   d e t a i l s  o f  t h e   s t i f f n e s s  
m a t r i x   e v a l u a t i o n  a r e  s t a n d a r d   t h e y  a re  n o t   i n c l u d e d   h e r e .  

T h e   l a y e r e d   b e a m   a n d   p l a t e   e l e m e n t s  a r e  shown i n   f i g u r e  2 .  

N o n l i n e a r   s o l u t i o n  A v e r y  small  l o a d  i n c r e m e n t  i s  f i r s t  a p p l i e d  t o  t h e  
s t r u c t u r e ,   a n d   t h e   c r a c k i n g   l o a d  i s  t h e n   e s t i m a t e d .   T h e  s i z e  o f  t h e   s u c c e s s i v e  
l o a d   i n c r e m e n t s  i s  c h o s e n  t o  b e   e q u a l  t o  0 . 1  times t h e   c r a c k i n g   l o a d  as  
s u g g e s t e d   b y   J o h n a r r y  (Ref.51; t h i s   i m p r o v e s   t h e  r a t e  of  c o n v e r g e n c e   s i n c e  
n o n l i n e a r i t i e s  a re  i n d u c e d   g r a d u a l l y   i n   t h e   s t r u c t u r e .  F o r  e a c h   l i n e a r i s e d  
i n c r e m e n t ,   t h e   u n k n o w n   d i s p l a c e m e n t s  a r e  o b t a i n e d   u s i n g   t h e   i n i t i a l   u n c r a c k e d  
s t i f f n e s s   m a t r i x .  S t r a i n s  c a l c u l a t e d  a t  t h e   c e n t r e  o f  e a c h   l a y e r  a r e  t a k e n  
as  r e p r e s e n t a t i v e  f o r  t h e   w h o l e   l a y e r .  Stresses are  t h e n  c a l c u l a t e d  u s i n g  
t h e  material  p r o p e r t i e s  f rom t h e   p r e v i o u s  material  s t a t e .  After c h e c k i n g   t h e  
s t a t e  o f  stress f o r  p o s s i b l e   y i e l d i n g ,   c r a c k i n g  o r  c r u s h i n g ,   t h e   i n t e r n a l   n o d a l  
r e s i s t i n g  forces  c a n   t h e n  be ca l cu la t ed  and c o m p a r e d  w i t h  t h e   e x t e r n a l  fo rces .  
T h e   l a c k  o f  e q u i l i b r i u m   b e t w e e n   i n t e r n a l   a n d   e x t e r n a l  forces  i s  cor rec ted  by  
a p p l y i n g   t h e   o u t - o f - b a l a n c e  o r  r e s i d u a l  f o r c e s .  T h e   o u t - o f - b a l a n c e  forces  
a re  s u c c e s s i v e l y   a p p l i e d   t h r o u g h  a ser ies  of  i t e r a t i o n s  of  t h e   s o l u t i o n   a n d  new 
c o r r e c t i o n s  t o  t h e  u n k n o w n   d i s p l a c e m e n t s  a r e  o b t a i n e d   u n t i l   t h e   e q u i l i b r i u m   a n d  
t h e   c o n s t i t u t i v e  re la t ions  are sa t i s f i ed  w i t h i n  a c e r t a i n  a l lowable limit. 
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The f o l l o w i n g   c o n v e r g e n c e   c r i t e r i o n   i s   u s e d :  

16, a g ~ ' / ( a ~   a ]  4 < 0.01 - I 6 1  
T 

where  6a - and a a r e   t h e   v e c t o r s   o f   i t e r a t i v e   a n d   t o t a l   d i s p l a c e m e n t s   r e s p e c t i v e l y .  - 
The a n a l y s i s   i s   t e r m i n a t e d  when convergence i s   n o t   a c h i e v e d   w i t h i n  a 

s p e c i f i e d  number o f   i t e r a t i o n s .   T h i s   u s u a l l y   o c c u r s  when  a s t r u c t u r e   i s   a b o u t  
t o   f a i l .  An e s t i m a t e   o f   t h e   f a i l u r e   l o a d  can then  be   ob ta ined.  

SOLID AND STIFFENED  PLATES 

Corne r   suppor ted   s lab  A c o r n e r   s u p p o r t e d   d o u b l y   r e i n f o r c e d   c o n c r e t e   s l a b  
(Ref.61 i s  a n a l y s e d   u s i n g  a 3x3 mesh i n  a symmetr ic  quadrant.  I n i t i a l l y  it 
i s  assumed t h a t   t h e r e   i s  n o   t e n s i o n   s t i f f e n i n g .   C r a c k   p a t t e r n s   o n   t h e   l o w e r  
s u r f a c e   o f   t h e   s l a b   f o r   t w o   l o a d   l e v e l s   ( 1 2  k N  and 62 kN1 a re  shown i n  
f i g u r e  3. F i g u r e  4 shows t h e   l o a d   d i s p l a c e m e n t   c u r v e .   A f t e r   t h e   s t e e l   y i e l d s  
the  norm o f  t h e   o u t - o f - b a l a n c e  membrane f o r c e s   i s   r a t h e r   l a r g e   e v e n   t h o u g h   t h e  
d isp lacement   convergence  to le rance i s   s a t i s f i e d .  When t h e   d i s p l a c e m e n t   t o l -  
erance i s  decreased  f rom l% t o  0 . 1 %   a f t e r   t h e   s t e e l   y i e l d s , a n   i m p r o v e d   r e s u l t  
i s  o b t a i n e d  as shown i n   f i g u r e  4. 

When t e n s i o n   s t i f f e n i n g   i s  used,   improved  d isp lacement   va lues  are 
o b t a i n e d .   H o w e v e r ,   t h i s   r e s u l t s   i n   h i g h e r   f a i l u r e   l o a d s .  When t h e   u n l o a d i n g  
p a r t   o f   t h e   t e n s i o n   s t i f f e n i n g   c u r v e   i s   e x t e n d e d ,   b e t t e r   r e s u l t s   a r e   o b t a i n e d  
f o r   t h e   d i s p l a c e m e n t s   b u t   t h e   f a i l u r e   l o a d s   a r e  still h i g h .  When a f i n e r  
t o l e r a n c e   i s   u s e d   a f t e r   s t e e l   y i e l d i n g , e x c e l l e n t   r e s u l t s   a r e   o b t a i n e d   a s  shown 
i n   f i g u r e  5.  

S t i f f e n e d   s l a b  The l o a d - c e n t r a l   d e f l e c t i o n   c u r v e   p r e d i c t e d   b y   t h e   p r e s e n t  
model f o r  a r e i n f o r c e d   c o n c r e t e  T-beam t e s t e d   b y  Cope and Rao (Re f .7 )   a re  
g i v e n   i n   f i g u r e  6, w h i c h   a l s o   i n c l u d e s  some g e o m e t r i c   d e t a i l s   o f   t h e  beam. 
The l o a d - d e f l e c t i o n   g r a p h s   o b t a i n e d   b y  Cope and Rao, b o t h   e x p e r i m e n t a l l y   a n d  
u s i n g  a f i n i t e   e l e m e n t   s h e l l   f o r m u l a t i o n ,   a r e   a l s o   r e p r o d u c e d   i n   f i g u r e  6.  
The good  agreement   be tween  the   load-def lec t ion   g raphs   p red ic ted   by   the   p resent  
ana lys i s   and   bo th   Rao 's   exper imen ta l   and   numer i ca l   ana lyses   shc - . s   t ha t   t he  
p r o p o s e d   a p p r o a c h   p r o v i d e s   a n   i n e x p e n s i v e   y e t   f a i r l y   a c c u r a t e   a n a l y s i s   f o r  
r e i n f o r c e d   c o n c r e t e   s l a b s   w i t h  RC beam s t i f f e n e r s .  

REINFORCED  CONCRETE  VOIDED  PLATES 

V o i d e d   r e i n f o r c e d   c o n c r e t e   a n d   p r e s t r e s s e d .   c o n c r e t e   p l a t e s   a r e   w i d e l y   u s e d  
f o r   t h e i r  economic   advan tages .   A l though   the   behav iou r   o f   such   s t ruc tu res   has  
been  s tud ied  i n  t h e   e l a s t i c   r a n g e   [ R e f . 8  , Ref.91,  very l i t t l e   e x p e r i m e n t a l  
and a n a l y t i c a l   w o r k   a p p e a r s   t o   h a v e   b e e n   c a r r i e d   o u t   o n   t h e   b e h a v i o u r  of these 
s t r u c t u r e s   i n   t h e   o v e r l o a d i n g   a n d   u l t i m a t e   s t a g e s .   I n   t h e   e l a s t i c   a n a l y s i s ,  
e q u i v a l e n t   v a l u e s   o f   t h e   f l e x u r a l ,   t o r s i o n a l   a n d   s h e a r   r i g i d i t i e s  of a vo ided  
p l a t e   c a n   b e   c a l c u l a t e d   i n   d i f f e r e n t  ways  (Ref.9 , Ref. lO1  and  used i n  a 
f i n i t e   d i f f e r e n c e  or  a f i n i t e   e l e m e n t   a n a l y s i s   o f  a n   e q u i v a l e n t   o r t h o t r o p i c  
s o l i d   p l a t e .  The n o n l i n e a r   a n a l y s i s   i s ,   h o w e v e r ,   r a t h e r  more  complex. The 
s p r e a d   o f   p l a s t i c i t y  and n o n l i n e a r i t i e s  due t o   c r a c k i n g   a n d   c r u s h i n g   o f   c o n c r e t e  
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t h r o u g h   t h e   d e p t h   o f   t h e   p l a t e   m u s t   b e  t a k e n  i n t o   a c c o u n t .  A n o n l i n e a r  f i n i t e  
element a n a l y s i s   u s i n g  a 30 o r   s h e l l   f o r m u l a t i o n   t o   r e p r e s e n t   d i f f e r e n t  
s t ruc tu ra l  elements o f   t h e   v o i d e d   p l a t e  seems i d e a l .   U n f o r t u n a t e l y   s u c h  a 
f o r m u l a t i o n ,   t h o u g h   f e a s i b l e ,  i s  v e r y   e x p e n s i v e .  I n  t h e   p r e s e n t   a p p r o a c h ,  a 
less e x p e n s i v e   a p p r o a c h   t o   t h e   n o n l i n e a r   a n a l y s i s   o f  RC v o i d e d   p l a t e s  i s  
t e n t a t i v e l y   s u g g e s t e d .   T h e   a n a l y s i s  i s  b a s e d   o n   t h e   f o r m u l a t i o n   o f  RC 
s t i f f e n e d   p l a t e s   d e s c r i b e d  e a r l i e r ,  w h e r e  t h e  v o i d e d   p l a t e  i s  a s s u m e d   t o   c o n -  
s is t  o f   v o i d e d   p l a t e  elements r e p r e s e n t i n g   t h e   u p p e r   a n d   l o w e r   f l a n g e s   a n d  
beam s t i f f e n e r s  r e p r e s e n t i n g   t h e   w e b s .  

The b a s i c   a s s u m p t i o n  i s  b a s i c a l l y  t h a t  o f   M i n d l i n :  a t r a n s v e r s e   p l a n e  
n o r m a l   t o  t h e  m i d d l e   p l a n e   o f  t h e  p l a t e   r e m a i n s   p l a n e   b u t   n o t   n e c e s s a r i l y  
n o r m a l   a f t e r   d e f o r m a t i o n ,  t h u s  i m p l y i n g   t h a t   t h e   d e f o r m a t i o n s   o f   b o t h   f l a n g e s  
are  r e l a t e d .  T h i s  a s s u m p t i o n  may b e   j u s t i f i e d   f o r   v o i d e d   s l a b s  w i t h  l a r g e  
n u m b e r s   o f   v o i d s ,   w h i c h   h a v e   a n   o v e r a l l   b e n d i n g   b e h a v i o u r   p r e d o m i n a n t l y   i n   t h e  
l o n g i t u d i n a l   d i r e c t i o n .   I n   s i t u a t i o n s   w h e r e  t h e  u p p e r   f l a n g e  i s  d i r e c t l y  
l o a d e d   b y  a c o n c e n t r a t e d   l o a d ,   b e t t e r  results c a n   b e   a c h i e v e d  i f  a n   o v e r -  
l a p p e d  mesh is u s e d   f o r  a s m a l l   p a r t   a r o u n d  t h e  l o a d e d   a r e a   t o   r e p r e s e n t  t h e  
u p p e r   f l a n g e   s o l e l y   w h i l e  t h e  o r i g i n a l  m e s h  i n  t h i s   p a r t   r e p r e s e n t s   t h e   l o w e r  
f l a n g e .  

D o c u m e n t e d   e x p e r i m e n t a l   e v i d e n c e   f o r  s u c h  s t ructures  i s  p r o v i d e d   b y  
E l l i o t t ,  C l a r k  a n d  Syrnmons I R e f . 1 1 1 .  I n  t h i s   w o r k  t h e  resul ts  o f  a q u a r t e r  
s c a l e   m o d e l   r e i n f o r c e d   c o n c r e t e   v o i d e d   b r i d g e   h a v e   b e e n   r e p o r t e d .   T h e   g e o -  
m e t r i c a l   d e t a i l s   o f   t h e   s l a b   a r e   s u m m a r i s e d  i n  f i g u r e  7 .  A n u m b e r   o f  tes ts  
were made t o   s t u d y   t h e   p e r f o r m a n c e   o f  t h e  s l a b  i n  t h e  service as well a s   t h e  
o v e r - l o a d i n g   s t a g e s   a n d   f i n a l l y   a n   u l t i m a t e   l o a d  tes t  was c a r r i e d   o u t .  T h i s  
e x a m p l e  h a s  b e e n   s o l v e d   u s i n g   t h e   p r o p o s e d   a p p r o a c h   f o r   v o i d e d   s l a b s .   T h e  
d i s c r e t i z a t i o n   a n d   c r o s s   s e c t i o n   r e p r e s e n t a t i o n   o f  a s y m m e t r i c   q u a r t e r   o f  t h e  
p l a t e  i s  g i v e n  i n  f i g u r e  8, w h i l e   t h e  l o a d - c e n t r a l   d e f l e c t i o n   g r a p h s   o b t a i n e d  
e x p e r i m e n t a l l y   a n d   a n a l y t i c a l l y  are  compared  i n  f i g u r e  9 .  It  i s  r e p o r t e d  t h a t  
t h e   c r a c k i n g   l o a d   w a s   n e a r l y   e q u a l   t o   t h e   w o r k i n g   l o a d  w h i c h  i s  i n  a g r e e m e n t  
w i t h  t h a t   p r e d i c t e d  by t h e  p r o p o s e d   m o d e l .   T h e   a g r e e m e n t   b e t w e e n  t h e  e x p e r -  
i m e n t a l   a n d   a n a l y t i c a l   g r a p h s   s h o w n  i n  f i g u r e  9 i s  v e r y   e n c o u r a g i n g .  T h e  
e x p e r i m e n t a l  resul ts  s h o w   t h a t  t h e  s l a b   f a i l e d   b y   t h e   f o r m a t i o n   o f  a mechan i sm 
w h i c h  i n v o l v e d   l o n g i t u d i n a l   s h e a r / f l e x u r a l   y i e l d   l i n e s   a n d   t r a n s v e r s e   h o g g i n g  
f l e x u r a l   y i e l d  l i n e s .  T h e  a n a l y t i c a l   s t u d y ,   h o w e v e r ,   s l i g h t l y   o v e r e s t i m a t e s  
t h e  f a i l u r e   l o a d  s ince  s h e a r   f a i l u r e s   c a n n o t   b e   p r e d i c t e d   b y  t h e  p r e s e n t   m o d e l .  

CONCLUSIONS 

T h e  p r o p o s e d   c o m p u t a t i o n a l   m o d e l   f o r  t h e  n o n l i n e a r   a n a l y s i s   o f   s o l i d   a n d  
s t i f f e n e d   r e i n f o r c e d   p l a t e s   p r o v i d e s   a n   i n e x p e n s i v e   a n d   r e a s o n a b l y   a c c u r a t e  
a p p r o a c h   w h i c h   c a n   b e   e x t e n d e d   f o r  use w i t h   v o i d e d   p l a t e s .  
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TABLE I.- MINDLIN PLATE  FORMULATION 

where 

d i ep lacsmen t s  ; = [u. V. w I T  J i r t u a l   d i s p l a c e r e n t  6; = [Su. 6 v .  dw] '  

L 

02" 1 j i n  which F is t h e   y i e l d   f u n c t i o n  

F = F ( 3 ,  H I  , n . L E  dH 

A i s  t h e   p r o p o r t m n a l i t y   c o n s t r a i n t  

A 2H 

(I i s  a m o d i f i c a t i o n   f a c t o r  (usually o = 1.21 H i s  t h e   h a r d e n i n g   p a r a m e t e r  
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Figure  1.- Typical  slab-beam  system and 
i t s  s t r u c t u r a l   i d e a l i s a t i o n .  

[..*I- PI.". 0Ir.I.l.nC. 

(a)  Layered f i n i t e  plate element.   (b)  Layered beam element.  

F igure  2.- Layered plate and beam elements.  
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Figure 3 . -  Crack patterns on the lower side of Mueller’s slab. 
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(b) Cross - sec t ion   r ep resen ta t ion .  

F igure  8.- F i n i t e   e l e m e n t   d i s c r e t i s a t i o n  of vo ided   p l a t e .  
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Figure  9.- L o a d - c e n t r a l   d e f l e c t i o n   c u r v e s   f o r   v o i d e d  plate  model. 

25 





NEWTON'S METHOD: A LINK BETWEEN CONTINUOUS AND 

DISCRETE  SOLUTIONS OF NONLINEAR  PROBLEMS 

Gaylen A. Thurston 
Langley  Research  Center 

ABSTRACT 

Newton's  method fo r   non l inea r   mechan ics   p rob lems   r ep laces   t he   gove rn ing  
non l inea r   equa t ions  by an  i terat ive sequence   o f   l i nea r   equa t ions .  When t h e  
l i n e a r   e q u a t i o n s  are l i n e a r   d i f f e r e n t i a l   e q u a t i o n s ,   t h e   e q u a t i o n s  are u s u a l l y  
so lved  by numerical   methods.  The i terative s e q u e n c e   i n  Newton's  method  can 
exh ib i t   poor   conve rgence   p rope r t i e s  when the   non l inea r   p rob lem  has   mu l t ip l e  
s o l u t i o n s   f o r  a f i x e d  set o f   pa rame te r s ,   un le s s   t he  i terative sequences are 
aimed a t  s o l v i n g   f o r   e a c h   s o l u t i o n   s e p a r a t e l y .  The t h e o r y   o f   t h e   l i n e a r  
d i f f e r e n t i a l   o p e r a t o r s  is  o f t e n  a b e t t e r   g u i d e   f o r   s o l u t i o n   s t r a t e g i e s   i n  
applying  Newton's  method  than  the  theory of l i n e a r   a l g e b r a   a s s o c i a t e d   w i t h  
t h e   n u m e r i c a l   a n a l o g s   o f   t h e   d i f f e r e n t i a l   o p e r a t o r s .   I n   f a c t ,   t h e   t h e o r y   f o r  
t h e   d i f f e r e n t i a l   o p e r a t o r s   c a n   s u g g e s t   t h e   c h o i c e   o f   n u m e r i c a l   l i n e a r   o p e r a t o r s .  
I n   t h i s   p a p e r   t h e  method  of va r i a t ion   o f   pa rame te r s   f rom  the   t heo ry   o f  l inear  
o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s  i s  examined i n   d e t a i l   i n   t h e   c o n t e x t   o f  
Newton's  method t o   d e m o n s t r a t e  how i t  might   be  used as a gu ide   fo r   numer i ca l  
s o l u t i o n s .  

INTRODUCTION 

Nonlinear  mechanics  problems  can  be  formulated as n o n l i n e a r   d i f f e r e n t i a l  
equa t ions  and assoc ia ted   boundary   condi t ions .  One approach   t o   so lv ing   t hese  
non l inea r   equa t ions  i s  Newton's  method.  Newton's  method  replaces  the  nonlinear 
equa t ions   w i th   an  i terative s e q u e n c e   o f   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  The 
p resen t   pape r   emphas izes   t ha t   each   i t e r a t ipn  s t e p  c o n s i s t s  of  two s e p a r a t e  
ope ra t ions .  The f i r s t   o p e r a t i o n ,   r e f e r r e d   t o  as l i n e a r i z a t i o n ,  is t h e  
d e r i v a t i o n   o f   t h e   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  The second  opera t ion  is  t h e  
s o l u t i o n  of t h e   l i n e a r   e q u a t i o n s   a n d  is r e f e r r e d   t o  by t h e  name o f   t h e  method 
o f   s o l u t i o n   f o r   t h e   l i n e a r   s y s t e m   ( e . g . ,  power series, asymptot ic  series, 
f in i t e -d i f f e rences ,   f i n i t e - e l emen t s ,   success ive   approx ima t ions ,   o r   boundary  
i n t e g r a l s ) .  

The e m p h a s i s   o n   d e f i n i n g   t h e   i t e r a t i o n   i n   N e w t o n ' s  method as two suc- 
cessive o p e r a t i o n s  is to  prevent   confusion  between  Newton 's   method  and the 
f a m i l i a r  Newton-Raphson method f o r  a set o f   non l inea r   a lgeb ra i c   equa t ions .  The 
confus ion  arises when the   s econd   ope ra t ion  is purely  numerical   and  depends  on 
a d i s c r e t i z a t i o n   o p e r a t i o n .   I n   t h i s  case, t h e   o p e r a t i o n   o f   d i s c r e t i z a t i o n  
c a n   b e   a p p l i e d   t o   t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r s   f o l l o w e d   b y   t h e   l i n e a r -  
i z a t i o n  of t h e  Newton-Raphson  method. Or tega   and   Rheinbold t ,   ( re f .  l), prove 
t h a t   t h e   o p e r a t i o n s   o f   l i n e a r i z a t i o n  and d i s c r e t i z a t i o n  commute. Theopera t ions  
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r e s u l t   i n   t h e  same set o f   l i n e a r   a l g e b r a i c   e q u a t i o n s   f o r   e a c h   i t e r a t i o n   s t e p  
f o r   b o t h   t h e  Newton-Raphson  method  and  Newton's  method.  The  proof t h a t   t h e  
two o p e r a t i o n s  commute r e q u i r e s   t h a t   " t h e   d i s c r e t i z a t i o n s  are c a r r i e d   o u t  
i n   t h e  same way." 

The present   paper   examines   p roblems  where   the   d i scre t iza t ions  are no t  
c a r r i e d   o u t   i n   t h e  same way.  The c h o i c e   o f   d i s c r e t e  model is a f f e c t e d   b y   t h e  
t h e o r y   o f   t h e   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  Examples  of these   p roblems are 
boundary-va lue   p roblems  where   mul t ip le   so lu t ions   ex is t   for  a f i x e d  set of 
parameters .   This  class of   p roblems  inc ludes   per iodic   so lu t ions   o f   nonl inear  
dynamics  problems  and s t a t i c  buck l ing   p rob lems   w i th   b i fu rca t ion   po in t s   and  
wi th  l i m i t  p o i n t s .  

Newton's  method,  that is, t h e   o p e r a t i o n  of l i n e a r i z a t i o n   b e f o r e   d i s -  
c r e t i z a t i o n ,   s u p p l i e s  two k inds   o f   i n fo rma t ion   fo r   p rob lems   w i th   mu l t ip l e  
s o l u t i o n s .  The f i r s t   k i n d  i s  q u a l i t a t i v e   i n f o r m a t i o n   w h i c h  i s  r e l a t e d   t o   t h e  
conve rgence   o f   t he   i t e r a t ive   p rocedure   and  is  u s e f u l   i n   i t s e l f .  The second 
k ind   of   in format ion  i s  q u a n t i t a t i v e   i n f o r m a t i o n   t h a t   d i r e c t l y   a f f e c t s   t h e  
d i s c r e t e  model.  The l i t e r a t u r e   f o r   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s  is vast 
and much of  i t  p r o v i d e s   i n s i g h t   i n t o   t h e   c o n v e r g e n c e   p r o p e r t i e s  of Newton's 
method.  Rather  than  attempting a gene ra l  review o f . a p p l i c a b l e   t h e o r y ,   t h i s  
paper  examines  one  method i n   d e t a i l  as i t  relates t o  Newton's  method. The 
method  examined i s  v a r i a t i o n  of  parameters as i t  is app l i ed   t o   sys t ems   o f  
o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  The theory  i s  examined f i r s t ,   f o l l o w e d  by a 
d i s c u s s i o n   o f   t h e   a p p l i c a t i o n   o f   t h e   t h e o r y   t o   d i s c r e t e   s o l u t i o n s   o f   n o n l i n e a r  
p rob lems   w i th   mu l t ip l e   so lu t ions .  

The  main  body  of  the  paper  on  variation  of  parameters is preceded  by a 
p r e l i m i n a r y   s e c t i o n .   T h i s   s e c t i o n   d i s c u s s e s   t h e   l i n e a r i z a t i o n   o p e r a t i o n   i n  
Newton's  method. Once t h e   e q u a t i o n s  are l i n e a r i z e d ,   d i f f e r e n t   v e r s i o n s  of 
Newton 's   method  receive  different  names i n   t h e   l i t e r a t u r e .   T h e s e  
v e r s i o n s  are b r i e f l y   r e v i e w e d .  The sec t ion   a l so   d i scussed   conve rgence  of  
Newton's  method as i t  p e r t a i n s   t o   n o n l i n e a r   p r o b l e m s   w i t h   m u l t i p l e   s o l u t i o n s .  
The t h e o r e t i c a l   r e s u l t s   f r o m   v a r i a t i o n  of parameters   sugges t   changes   in  
dependen t   va r i ab le s   t ha t  are determined  by  the  given  problem  and,   therefore ,  
are app l i cab le   t o   adap t ive   compute r   so lu t ions .  A f i n a l   s e c t i o n   i n d i c a t e s  
t he   gene ra l   na tu re   o f   such   adap t ive   compute r   so lu t ions .  

NEWTON'S METHOD 

Fundamental  Concepts 

Nonlinear   mechanics   problems  that  are formulated as n o n l i n e a r   o r d i n a r y  
o r   n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   c a n   b e   s o l v e d   u s i n g   N e w t o n ' s  
method. The b a s i c   i d e a   i n  Newton's  method is t o  expand  the   nonl inear   opera tor  
abou t   an   a s sumed   o r   an   approx ima te   so lu t ion .   Th i s   expans ion   y i e lds  a new 
n o n l i n e a r   o p e r a t o r   t h a t   o p e r a t e s  on  an unknown c o r r e c t i o n   t o   t h e   a p p r o x i m a t e  
s o l u t i o n .  It is assumed i n  Newton's  method t h a t   n o n l i n e a r   t e r m s   i n   t h e  
c o r r e c t i o n  are small compared t o   l i n e a r  terms, and   t he   non l inea r   t e rms  are 
t empora r i ly   neg lec t ed .  The r e s u l t i n g   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s  are 
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so lved   fo r   an   approx ima te   co r rec t ion   wh ich  is added t o   t h e  assumed s o l u t i o n   t o .  
make a new approximation. The procedure is  r e p e a t e d   u n t i l   t h e   c o r r e c t i o n s  are 
small. A t  e a c h   i t e r a t i o n   s t e p ,   t h e   r e s i d u a l   e r r o r   i n   t h e   s o l u t i o n   o f   t h e  non- 
l i nea r   p rob lem is a f u n c t i o n  of t h e   n o n l i n e a r  terms n e g l e c t e d   i n   t h e   p r e v i o u s  
i t e r a t i o n   s t e p .   C o n v e r g e n c e   o f   t h e  i terative sequence is a l m o s t   a s s u r e d   i f  
the   nonl inear   p roblem  has  a un ique   so lu t ion .  When the   nonl inear   p roblem  has  
mul t ip l e   so lu t ions ,   conve rgence  i s  no t   a s su red   i n   Newton ' s  method u n l e s s  
p r o v i s i o n s  are made t o   c o n v e r g e   t o   o n l y   o n e   s o l u t i o n   f o r   e a c h   i t e r a t i o n  
sequence.   Examples   of   problems  with  mult iple   solut ions are s ta t ic  buckl ing  
problems  wi th   b i furca t ion   po in ts   and   wi th  l i m i t  p o i n t s   a n d   c e r t a i n   n o n l i n e a r  
v ib ra t ions   p rob lems .  The t h e o r y   o f   l i n e a r   d i f f e r e n t i a l   o p e r a t o r s  is u s e f u l  
i n   gu id ing   numer i ca l   computa t ions  s o  t h a t  Newton's  method  converges t o   t h e  
des i r ed   so lu t ion   b ranch .  

The l i n e a r   o p e r a t o r   i n  Newton's  method i s  c a l l e d   t h e   F r e c h e t   d e r i v a t i v e ,  
and i t  is d e r i v e d   f r o m   t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r   f o r   t h e   p r o b l e m .  
L e t  t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r   b e  P ope ra t ing   on  a scalar func t ion  
o r   v e c t o r   f u n c t i o n   y .  The nonl inear   problem i s  

p lus   a s soc ia t ed   i n i t i a l   cond i t ions   o r   two-po in t   boundary   cond i t ions .   Deno te  
by ym t h e   a p p r o x i m a t i o n   t o   t h e   s o l u t i o n   o f   e q u a t i o n   ( 1 )   a f t e r   t h e  mth 
i t e r a t i o n   s t e p ,  and  denote  by 6ym+l t h e   c o r r e c t i o n   t o  y,. Then t h e  Newton 
i t e r a t i o n   p r o c e s s   s o l v e s   r e c u r s i v e l y   t h e   e q u a t i o n s  

p' CYm-,l @Ym) = -PcYm-ll 

m = 1 , 2 , 3 , . . . .  

The o p e r a t o r  P'[ym-l] i n   e q u a t i o n   ( 2 a )  is the   F reche t   de r iva t ive .   Fo rma l  
d e f i n i t i o n s  of t h e   F r e c h e t   d e r i v a t i v e   a p p e a r   i n   t e x t s   o n   f u n c t i o n a l   a n a l y s i s ,  
r e f e r e n c e   ( 2 ) .   F o r   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r s   o p e r a t i n g  on  continuous 
f u n c t i o n s ,   t h e   F r e c h e t   d e r i v a t i v e   c o n s i s t s  of t h e   l i n e a r   o p e r a t o r s   t h a t   a p p e a r  
i n  a Taylor  series e x p a n s i o n   i n  several v a r i a b l e s .  The expansion i s  i n  terms 
of the   dependen t   va r i ab le s   r a the r   t han   t he   i ndependen t   va r i ab le s ,   r e f e rence  (3). 

Examples   of   Frechet   Derivat ives  

For  example,   consider a s i n g l e   n o n l i n e a r   e q u a t i o n .  



with C, x, F and w constants.  The  linear  variational  equation, 
equation (2a), for  equation (3)  is 

The  Frechet  derivative  for  the  nonlinear  operator  is  the  operator 

The  Taylor  series  expansion  in  Newton’s  method  is  readily  extended  to 
partial  differential  operators. A second  example  is  a  nonlinear  strain 
expression 

Then 

x u  a6w aum-l a 6u 

aZ ax ax az 

m  m m +- - E’ CYm-,I(6Ym) = - +- 
XZ 

aU avm-l m av a 6vm m-1 +- - m +- - +- - m-1 

aw m-1  aswn  awm-, a 6wm 
+- - +- - 

In  addition to the  linear  variational  equations  of  Newton’s  method,  the 
Frechet  derivative  appears  as  part  of  the  chain  rule  of  differentiation. 
If the  nonlinear  operator  is  written P(y(x),x)  to emphasize  that  y  is  a 
function of the  independent  variable,  the  total  derivative  of  P  is 
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- dx  dP = P.'Cyl(~) + E  = 0 

The  derivative  of  equation (3) with  respect  to t can  be  written 

d2 dY 
7 (z) + 2C dy (?) + X (cos  y) - = wF COS wt (9) 
dt dt dt dt dt 

It is  often  useful  to  think  of y as  a  function  of  parameters  in  addition to 
the  independent  variables  and  the  operator  as P(y(h,x),x,X). Then 

ax = P'CYl(%) + 6 = 0 

where  the  dot  notation  denotes  partial  differentiation  with  respect to a 
parameter  while  holding  both  the  independent  and  dependent  variables  fixed. 
If y is  considered  as  a  function of t and x is  equation ( 3 ) ,  

Some  versions  of  Newton's  method  make  use of equation  (10)  in  solving for 
particular  solutions  of  equations (2a). 

Different  Versions of Newton's  Method 

In  this  paper,  the  iterative  procedure  defined  by  equations (2)  is 
called  Newton's  method.  Bellman  (refs. 4 and 5) gave  the  procedure  the  name 
quasilinearization.  McGill  and  Kenneth  (ref. 6 )  use  the  terminology 
generalized  Newton-Raphson  operator  for  the  Frechet  derivative  of  nonlinear 
differential  operators.  The  three  different  names  are  synonymous  for  the 
general  iterative  method. 

When  the  linear  variational  equations,  equations (2a), are  solved  by a 
specific  algorithm,  different  writers  have  coined  different  names  for 
specialized  versions  of  Newton's  method.  Perrone  and  Kao  (refs. 7 and 8 )  
transform  equations (2) to  finite  difference  equations  and  solve  the  resulting 
linear  algebraic  equations by relaxation.  This  algorithm  is  called  nonlinear 
relaxation  by  Perrone  and  Kao. 
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Other  versions  of  Newton's  method  are  connected  with  solutions of the 
linear  variational  equations  depending  on  a  parameter. In-mechanics, it  is 
usual to compute  a  set  of  solutions  for  the  nonlinear  problems  for a given 
set  of  loads  or  other  parameters. It soon  becomes  apparent  to  a  user of 
Newton's  method  that a  solution  for  one  load  or  parameter  is  a  good  zeroth 
approximation  for  a  solution  for  a  nearby  parameter  (ref. 9). If P(u,h) = 0 ,  
then u is a good  zeroth  approximation  for  the  solution  for P(y,A + AI) = 0 .  
The  first  iteration  of  Newton's  method, m = 1 in  equations (2), is  then 

If  the  nonlinear  operator  is  linear  in  the  parameter so that  quadratic  and 
higher  order  terms  in AA do not  appear,  a  particular  solution  of  equation(12) 
follows  directly  from  equation (10). For  this  case, 

y1 = u + -  AA aU 
ax 

If  Newton's  method  is  terminated  after  one  iteration, m = 1, equation (14) 
becomes  the  zeroth  approximation  for  the  next  increment  on x. Na  and 
Turski  (ref. 10) call  this  version of Newton's  method a  solution  by  parameter 
differentiation.  When  the  parameter A is a load  parameter  and  the  iteration 
in  equations  (2)  is  continued  for  the  iteration  counter m > 1, Newton's 
method  is  also  known  as  the  incremental  method.  Stricklin  and  Haisler 
(ref. 11) review  various  versions of this  approach  when  the  linear  variational 
equations,  equations (Za),  are  solved  by  the  finite  element  method. 

The  idea  of  continuing  known  solutions of nonlinear  problems  into 
nearby  neighborhoods  gives  rise  to  higher  order  forms  of  Newton's  method. 
These  forms  retain  higher  order  derivatives in  the  Taylor  series  about  a 
known  solution.  These  higher  order  methods  stem  from  Taylor  series  expansions 
in  the  independent  variable  for  initial  value  problems.  Davis  (ref.  12) 
designated  this  method  as a  solution  by  analytic  continuation  because  the 
solutions  are  capable  of  extension  around  singular  points  in  the  complex 
domain.  Weinitschke  (ref.  13)  applied a  similar  approach  to  solve  axisymmetric 
shallow  shell  equations  for  particular  solutions  starting  at  one  boundary.  He 
used  the  Newton-Raphson  method  to  satisfy  boundary  conditions  at a  second 
boundary. 

Stricklin,  et  al.,  (refs. 14 and  15)  and  Noor  and  Peters  (ref.  16) 
combine  the  idea  of  analytic  continuation  with  parameter  differentiation 
by  computing  higher  partial  derivatives  with  respect  to a parameter. 
Stricklin  and  Haisler  (ref. 11) refer to the  general  scheme  as  a  self-correcting 
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incremental  approach  to  nonlinear  problems. Noor.does not  substitute  the 
high  partial  derivatives in a  Taylor  series in AA, but  uses  them as basis 
vectors in a  Rayleigh-Ritz  solution  of  the  original  nonlinear  problem. 

The  modified  Newton's  method  uses  the  same  Frechet  derivative  for  each 
iteration.  Instead  of  equations (2), the  iterative  sequence is 

m = 1 , 2 , 3 . . .  

Convergence 

The  advantage  of  having  the  same  linear  operator  for  each  iteration 
step in the  modified  Newton's  method  is  offset  by  slower  convergence  to  the 
solution  of  the  nonlinear  problem.  Parameter  differentiation  exhibits 
slow  convergence  near  limit  points  where h/aA is  infinite. 

Kantorovich  (ref. 2) proves  sufficient  conditions  for  the  convergence 
of  Newton's  method.  The  sufficient  conditions  are  restrictive,  but,  when  they 
apply,  the  nonlinear  problem  has  a  unique  solution  near  the  zeroth 
approximation. 

In  practical  applications  of  Newton's  method,  there  is  not  enough 
information  to  apply  Kantorovich's  convergence  criterion.  However,  it is a 
useful  guide  because  nonlinear  problems  with  unique  solutions  for  a  fixed 
range  of  parameters  will  exhibit  rapid  convergence  of  Newton's  method.  When 
the  solutions  are  not  unique,  Newton's  method  can  still  converge.  The  lack 
of uniqueness in the  nonlinear  solutions  is  reflected  by  lack of uniqueness in 
6Ym  at  some  iteration  step  m.  A  decision  on  which  solution  branch  to  pursue 
must  be  made  before  continuing  the  iteration. 

The  theory  of  the  linear  differential  operators  is  a  guide  for  making 
these  decisions.  Application  of  the  theory  of  linear  ordinary  differential 
equations  in  finding  multiple  solutions  of  nonlinear  problems  is  the  topic  of 
the  next  section. 

VARIATION OF PARAMETERS 

One  method  of  analysis is examined  here in  detail to  show how linearization 
can influence  discretization.  The  method  is  variation of parameters  which 
i s  used  for  finding  particular  solutions  for  systems  of  linear  ordinary 
differential  equations.  The  theory  for  linear  ordinary  differential  equations 
is well understood  and  is  a  reliable  guide  for  computing  their  solutions.  The 
variational  equations  of  Newton's  method  are  linear  ordinary  differential 
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equations  when  the  nonlinear  problem  is  governed  by a system of nonlinear 
ordinary  differential  equations. 

Assume  that  the  nonlinear  problem  can  be  written  as 

P(y) = 2 + F(y,x,X) = 0 a < x L b  - 

plus  two-point  boundary  conditions, 

The  dependent  variable y is a  vector  function  with  n  component 
functions  of  the  independent  variable  x.  There  are n boundary  conditions 
which  may  be  nonlinear. 

The  sequence  for  the  mth  iteration  step,  equations (Z), is 

The  Frechet  derivative  F'[ym-l,x,A]  for  this  case  is  the  Jacobian 
of  the  function F(y,l,x,X). The  shorthand  notation 

will  be  used  in  subsequent  equations. 

The  solution  of  the  linear  variational  equations,  equation (18a),  can 
be  written  in  matrix  notation  as  (see  ref. 17, for  example) 
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The  matrix  Qm  contains  n  columns,  each  column  contains  a  linearly 
independent  solution +(x) of  the  homogeneous  differential  equations. 

- a+ $ = O  dx " Jm-l 
The  vector Em is  constant.  The  vector  function  6ym  is  the  particular 
solution  of  the  differential  equation  system.  The  metgod  of  variation  of 
parameters  is  a  method  of  deriving  the  particular  solution  using  the  solutions 
of  the  homogeneous  equations am. The  method  introduces  the  change  in 
variables 

where z is a  vector  function.  In  the  new  variables z,, equation  (21a) 
is m 

The  terms  multiplying z, vanish  identically  from  equation  (23)  since  each 
column Qm satisfies  the  homogeneous  equations,  equation (21). The 
equations 

are  solved  by  inverting  the  matrix (3 and  integrating  each  equation. m 

Substituting  equation  (25)  back  into  equation  (22)  completes  the 
solution  for  6ym.  Comparing  like  terms  with  equation (20) shows  that  the 
particular  solution  is 
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Whenever  the  integrals  in  equation  (26)  exist,  the  particular  solution 
always  exists  and  depends  on  both  the  residual  error  and  the  solutions  of  the 
homogeneous  equations,  equation (21). 

Boundary  Conditions  and  Compatability 

Determining  the  values  of  the  constants  of  integration sm completes 
the  mth  iteration  step.  The  constants  depend  on  the  linearized  boundary 
conditions,  equation (18b). Substitution of equation  (25)  into  equation (18b) 
yields  a  set  of  linear  algebraic  equations 

B C = D  -m -m -m 

B = U' -m -m 

Assume  that  the  boundary  conditions  are  posed so that E,, is an  n X n  square 
matrix.  Then  three  possible  conditions  exist  for  the  solution  of  equations (27). 
Let  the  rank of matrix gm be (n - k) where  the  number  k  is  the  index of 
compatibility  (Ince,  ref. 18). Let  the  rank  of  the  matrix  obtained  by 
augmenting gm with  the  column  vector lIm be (n - p). The  three  conditions 
are  the  following: 

1. k = 0 There  is  a  unique  solution of equations  (27)  for  the  constants 
of integration sm. The  mth  iteration  step  is  complete  with  a  unique 
correction  vector By, given  by  equation (20). 

2. k < p The  algebraic  equations  are  incompatible  (also  referred to 
as  inconsistent)  and  no  solution  exists  for  the  constants of integration, 

-m' c; 

3 .  k = p There  are k arbitrary  constants  in  the  solutions of 
equations (2  7) 

B C J = O  -m -m j = 1,2, . . k 5 n 
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The  solution of the  linear  variational  equations,  equation (18), contains k 
arbitrary  constants A,. 

J 

k 

BYm = s j v m j  + BYml 
j =1 

The  Vm  are  linear  combinations  of  the  solutions  of  the  homogeneous 
equatiods , 

v = @  cj mj  m -m j = 1,2, .. k < n - 

The  particular  solution  Byml  is  completely  determined  and  satisfies  the 
boundary  conditions, 

"ml = QmGm + BY mP 

The  constants  of  integration Em in equations (32) are  solutions  of  a 
reduced  (n - k) square  matrix. 

The  theory  for  the  compatibility  of  the  boundary  conditions  is  related 
to  Kantorovich's  convergence  criteria  for  Newton's  method. The  first  condition 
k = 0 is  part  of  the  sufficient  conditions  for  convergence  of  Newton's 
method  to  a  unique  solution.  Problems  with  unique  solutions  converge  rapidly 
using  Newton's  method  and  the  numerical  solution  strategy  for  the  zeroth 
approximation  and  incrementing  parameters  is  not  crucial  for  convergence. 

The  second  condition k < p indicates  a  break  in  the  iteration 
sequence.  This  condition  is  not  usually  met  in  practice.  The  matrix Em 
becomes  ill-conditioned  near  limit  points  and  approaches  the  condition k < p, 
but  does  not  satisfy  the  condition  exactly.  If  the  assumed  solution  ym-l 
is  modified,  the  boundary  conditions  may  be  shifted  to  make k = 0 or 
k = p. This  modification  follows  the  same  lines  as  the  procedure  for  the 
third  condition, k = p,  which  is  considered  next. 

When k = p,  there  are k arbitrary  constants  of  integration Aj in 
the  correction  function  6ym  in  equation (30). If  the Aj can  be  assigned 
values,  the  iteration  can be continued. 
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Multiple  Solutions 

If k constants  of  integration A j  are  arbitrary  after m iteration 
steps,  the  nonlinear  problem  can  have  multiple  solutions  for a fixed  set of 
input  parameters.  The  procedure  for  determining  the  different  solutions 
depends  on  the  details  of  the  problem,  but  the  analysis  contains  general 
guidelines  for  assigning  values  for  the A j .  The  discussion  here  considers 
the  (m+l)th iteration  for  the  case 6yd = 0 in  equation ( 3 0 ) .  In other 
words,  it  is  assumed  that  convergence  has  been  obtained  for a solution  ym-l 
of  the  nonlinear  problem  for a certain  value  of X = x when  the A j  are 
zero. 

The  next  step  is  to  investigate  continuing  the  iteration  with  at  least 
one  of  the A j  small  but  finite.  The  residual  error  for  the (nt+l)th 
iteration  using  6ym  from  equation ( 3 0 )  is 

The  residual  is  nonlinear  in  the  constants A j .  The  lowest  order  terms  are 
quadratic  in  the  constants  unless F"[ym,x,T]  containing  second  derivatives 
in  the  Taylor  series  vanishes.  The  linear  variational  equation  for  the 
(mtl)  iteration  becomes 

The  Jacobian Jm is  shifted  from  Jm-l  and  is  also a function  of  the 
A * .  The  difference  in  the  two  Jacobians  appears  if  the transfomtion from 
tie  mth  iteration  is  applied  to  the  (m"1)th  step 

- 
"m+1 - @mzm+l 

Then,  equation ( 3 4 )  is  transformed  to 

( 3 5 )  
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The  difference  in  the  Jacobians  is  a  matrix 

( 3 7 )  

The  leading  terms  in  an  expansion  for  each  coefficient  of  the  matrix  is 
linear  in  the A j  when  the  residual  error  expansion  starts  with  quadratic 
terms.  The  leadlng  exponent  is  always  one  less  than  the  leading  exponent  in 
the  residual. 

In  theory,  equation ( 3 6 )  can  be  solved  by  variation  of  parameters. A 
new  set of constants of integration s,,+1 appears  in  the  solution  to  be 
determined by a  new  set  of  boundary  conditions. 

The  formal  solutions  contain  the  undefined Aj as  parameters.  In  numerical 
solutions,  the  explicit  dependence  of  the  solution  on  the Aj is  not known. 
A procedure  that  can  be  implemented  for  numerical  solutions 1s to  partition 
the  problem  of  determining  the  constants of integration -&+I, equation ( 3 8 ) .  

The  partitioning  identifies  k  constants of integration  as  corrections 
6 A j  on  the A .  and  partitions  equation ( 3 8 )  into a  k by k problem  to  fix 
the A .  and $Aj. An iterative  procedure  is to use  trial  values  for  the 
A j  and  solve  for  the 6Aj .  The k by k problem  is  solved  when  the 6 A j  
vanish  for  finite  real A j .  

The 6 A j  appear  as  the  first k variables  of E,+l when  the Vmj 
from  equation ( 3 0 )  are  arranged  in  the  first k columns of am in 
equation ( 3 5 ) .  Once  the A j  and 6 A j  are  determined,  the  remaining (n - k) 
equations  in  equation (38) are  a  linear  set  of  algebraic  equations in the 
remaining (n - k) constants  in sm+l. 

To  avoid  converging  back  to  the  solution  ym-l  with  the A -  = 0, 
a  shift  in X is  introduced  to  provide f o r  nonzero,  real  solutions  for 
the  constants A j .  

J 

The  shift  in X is  introduced  in  the  right  side  of  equation ( 3 4 )  
which  is  replaced  by 



and the r i g h t   s i d e   o f   e q u a t i o n  (36) is  

-@;lP(ym,x,X) = -@-lP(ym,x,x) - Qm -1. P(ym,x,'j;)(A - X) + . .. - 
m 

In t roduc ing  X as a f r e e   p a r a m e t e r   a l l o w s   i t e r a t i n g   o n   t h e   r e d u c e d  k by k 
problem  by  assigning a v a l u e   t o   o n e  A j  and   us ing  X as p a r t   o f   t h e  
minimization  on b y d l  by  making 6Aj z e r o   o r  small compared t o  A j .  

Which Aj t o   r e p l a c e  as a v a r i a b l e  by h depends  on  the  modal   coupl ing 
i n   t h e   g i v e n   p r o b l e m .  When k = 1, t h e r e  is only   one  Aj  = A 1  s o  t h e  
cho ice  is n o t   a r b i t r a r y .  

The case k = 1 i s  a common case fo r   p rob lems   w i th  l i m i t  p o i n t s   o r  
i s o l a t e d   b i f u r c a t i o n   p o i n t s .   T h e r e f o r e ,   t h e   g e n e r a l  i terative procedure 
f o r  k = 1 w i l l  be   examined   fur ther .  

I s o l a t e d   B i f u r c a t i o n   P o i n t  

F o r   a n   i s o l a t e d   b i f u r c a t i o n   p o i n t ,   y m - l  i s  i d e n t i f i e d  as a s o l u t i o n  
of   the   nonl inear   p roblem a t  X = x and k = p = 1. I n   a p p l i c a t i o n s  of 
Newton's  method,  the  solution  ym-l  can  be  generated  by  simply  incrementing 
the   parameter  X i n   n u m e r i c a l   s o l u t i o n s   t o   a p p r o a c h   t h e   b i f u r c a t i o n   p o i n t  
and   cont inue   pas t  i t .  A s  X is v a r i e d   i n   i n c r e m e n t s   i n   a n y   n u m e r i c a l  
solut ion  using  Newton 's   method,   the  boundary  condi t ion  matr ix   approaches 
B i n   e q u a t i o n  (29).  The  rows  of B can   be   r ea r r anged  by  elementary "m 
o p e r a t i o n s  so t h a t   t h e   c o e f f i c i e n t s  Gf a t  least one row, s a y  row  k = 1, 
are small as X approaches X. For a b i f u r c a t i o n   p o i n t ,   t h e   e l e m e n t  k of 
t h e  D v e c t o r  i s  i d e n t i c a l l y   z e r o   f o r  X n e a r  x. 

For a limit p o i n t ,   t h e   k t h  component o f  D may b e  small bu t   t he  small 
d i v i s o r s  of B prevent   convergence a t  X = x w i t h o u t   a n a l y s i s  similar t o  
t h e   b i f u r c a t i o n   a n a l y s i s   d e s c r i b e d   h e r e .  

When  ym-1 is a s o l u t i o n  a t  t h e   b i f u r c a t i o n   p o i n t  A = A ,  s e t t i n g  
- 

A 1  = 0 s o  t h a t  ym = ym-l  and  varying X c o n t i n u e s   t h e   s o l u t i o n  s o  t h a t  

as n o t e d   i n   t h e   d i s c u s s i o n  on p a r a m e t e r   d i f f e r e n t i a t i o n   a n d   e q u a t i o n  (13) .  

Having  one  solut ion  near  X ,  the  problem is t o   i n v e s t i g a t e   t h e   s e c o n d  
- 

so lu t ion   o f   t he   non l inea r   p rob lem whose e x i s t e n c e  i s  i d e n t i f i e d  by Vl, 
t h e   n o n t r i v i a l   s o l u t i o n   o f   t h e   l i n e a r   v a r i a t i o n a l   e q u a t i o n s .  

A s imple   p rocedure   fo r  Newton's  method is t o   a s s i g n  a v a l u e   t o  A 1  so  
t h a t  ym = ym-l + A l V l  i s  a known f u n c t i o n .   S o l v e   t h e   f i r s t  scalar equa t ion  
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of  the  set  of  equations (36)  where the  equations  are  arranged so that  the  first 
element  of zwl multiplies  the  vector  function VI. The  right  side  of 
the  single  differential  equation  is  the  first  element  of  equation (40). The 
constznt  of  integration 6A1 for  this  equation  can  be  set  to  zero  if 
(X - X) is  selected  to  make  the  first  component  of I))l in the  boundary 
conditions,  equation ( 3 8 ) ,  vanish. 

For  numerical  solutions,  the  analysis  required  by  the  expansion in 
equation (40) can be circumvented  by  recognizing  that  while the solution  for 
6A1 is nonlinear in AI,  it is approximately  linear in (X - X). The 
constant  of  integration  for 6A1  can  be minimized  by  interpolating  linearly 
between  solutions  for  residuals  P  (Ymyx,X + Axel) and  P(ym,x,x) where 
AXM1 is small  but  arbitrary.  This  interpolation on X to  determine 
X = XM1 for  fixed A1 is  shown  schematically in figure 1. The  figure 
represents  the  surface 6A1 = BAl(A1,h). It is  desired  to  compute  inter- 
sections  of  the  surface  and  the A1 - X plane.  The  surface  is  tangent  to 
the  plane  along  the A axis, but  solutions  with  A1 = 0 are  already  assumed 
known by  equation (41). Curves on the  surface  for  constant X are  nonlinear 
in A1  while  curves  for  constant  A1  are  assumed  to  be  nearly  linear. 
Therefore,  one  can  fix 20 and  approximate = X, + AX by  inter- 
polating 02 A between  the  calculated  points 6~&1)~,~~] and 
6A1[  (Al)m,X]  to approximate 6Al[  (Al)m,Xdl] = 0. 

of  equation (38) can  be  solved  to  complete  the  (d1)th  iteration.  When A1 
is  small,  the  terms  in [J, ; Jmsl ] can  be  neglected  in  these  equations  or 
handled  by  successive  approxlmatlons. 

Once  A1  is  determined  and X = Awl the  remaining (n - 1) equations 

Since  [Jm - Jm-l]  is  of  lower  degree  than  the  residual,  successive 
approximations  should  converge  rapidly  for  the  remaining (n - 1) equations, 
(ref. 18). 

If  the  linearized  boundary  conditions  are  no  longer  singular  because  of 
a  finite  AI,  the  usual  Newton  method  iteration  can  be  continued  with X 
prescribed as  an  independent  parameter. If the  boundary  conditions  are 
nearly  singular,  another  interpolation on X may  be  required. 

Once  the  analysis  shows how to  start  the  Newton's  method  iteration  with 
a  finite  value  of  Al,  different  implicit  or  explicit  numerical  integration 
methods  can  be  used  to  find X as  a  function  of A1 - 

NUMERICAL  SOLUTIONS 

In  applying  the  results  of  the  theory,  numerical  solutions  do  not  need  to 
follow  the  analysis in every  detail.  For  example,  "shooting"  methods 
(ref. 19) are  used  for  computing  particular  solutions  rather  than  variation 
of  parameters.  When  the  problem  is  partitioned  into  a  reduced k by k 
problem,  the  complete  transformation  indicated  by  equation (35) need  not be 
carried  out. The  transformation 
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"ymtl = w z  m+l 

is  sufficient  where  w  is  not  singular  and  contains  the k eigenfunctions 
Vmj as  its  first k columns. 

The  interpolation  on X for  fixed A1 can  be  carried  over  to  nonlinear 
partial  differential  equations  which  are  solved  by  matrix  methods. A finite- 
element  code  for  general  shell  problems  was  used  to  generate  the  end-shortening 
u  as  a  function  of  center  deflection  w  for an isotropic  square  plate  in 
compression.  The  amplitude  w = A1 was  held  constant  at  1.7h  where h is 
the  thickness  while  u  was  varied  in  the  role  of X. The  interpolation  on 
X is  indicated  by  the  dashed  lines in  figure 2.  One  iteration  cycle  of 
Newton's  method  (m = 1) with  input  wo = 1.7h  and u = 1.0 Ucr  (point A 
in  the  figure)  shifted  the  output to w1 = wo + 8wl = 1.32h  (point B). 
Another  separate  iteration  with  input  at  point C shifted  the  output  to 
w1 = 1.99h  and u = 4.47  ucr  (point D). Interpolating on u  gives 
8w1 = 0 at u = 2.97  Ucr  (point E). The  latter  value  of u  was  sufficiently 
accurate  to  obtain  convergence of Newton's  method  at  point F on the  solid 
curve.  The  solid  curve  was  generated  by  varying u in  increments  starting 
at  point F using  the  standard  Newton  iteration  of  the  computer  program. 
Varying  the  end-shortening  with  w = 0 over  all  the  plate  would  merely 
change  the  in-plane  solution  which  does  not  couple  with  the  transverse 
equilibrium  equation  for  an  initially  flat  plate.  Starting  the  iteration  on 
the  computer  solution  with  an  assigned  amplitude  of  the  lowest  buckling  mode 
shape  is  sufficient  to  achieve  convergence  on  the  postbuckled  curve. 

When  matrix  methods  are  used  for  the  numerical  solution of static 
boundary-value  problems,  a  similarity  transformation  on  the  tangent  stiffness 
matrix  is  analogous  to  the  change of variables  in  variations of parameters. 
When  the  equations  are  partitioned  using  only  k  modes,  equations (42), 
the  analog  is  an  equivalence  transformation  in  matrix  theory. 

The  numerical  analogies  will  not be developed  in  this  paper,  but  the 
general  development  should  parallel  the  discussion  here.  Eigenvectors 
the  numerical  analog  to  the  Prechet  derivative  replace  eigenfunctions. 
k by k reduced  problem  has  been  suggested  by  Almroth,  et  al.,  (ref. 
Solving  the  remaining (n - k) equation  by  successive  approximations  as 
suggested  here  preserves  linear  independence. 

of 
A 

20). 

CONCLUDING REMARKS 

Linearization  before  discretization  in  Newton's  method  allows  classical 
linear  theory  to  be  applied to nonlinear  mechanics  problems.  The  linear 
theory  provides  useful  qualitative  information  that  can  affect  convergence 
of  the  iterative  solution. 

The  example  in  the  paper,  variation of parameters  from  the  theory  of 
linear  ordinary  equations,  shows  clearly  the  interdependence of the  residual 
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error  and  the  properties  of  the  linearized  operator  in  Newton's  method. 
Variation  of  parameters  suggests a change  of  dependent  variables  for  computing o 

particular  solutions.  The  change  in  variables  is  also a means  of  partitioning 
the  problem  to  speed  convergence  of  Newton's  method  when  the  nonlinear 
problem  has  multiple  solutions  for a given  set  of  parameters. 

The  change  of  variables  can  be  extended  to  numerical  solutions  using 
matrix  methods  by  an  equivalence  transformation.  The  new  variables  arise 
naturally  in  the  problem  which  is  an  advantage  for  writing  computer  codes 
for  matrix  solutions.  No  prior  quantitative  information  on  choice  of 
variables  is  required  by  the  program  user. 
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Figure 1.- Schematic diagram of calculation of parameter  increment 
*X,+2 

- U 
U cr 
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- 

Figure 2.- Variation of end shortening  with  transverse  deflection of  plate 
in compression. 
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SUMMARY 

T r a n s i e n t ,   n o n l i n e a r   s o i l - s t r u c t u r e   i n t e r a c t i o n   ( S S I )   s i m u l a t i o n s  
of   an Electric Power Resea rch   In s t i t u t e   (EPRI ) ,  SIMQUAKE experiment were 
p e r f o r m e d   u s i n g   t h e   l a r g e   s t r a i n ,  t i m e  domain STEALTH 2D code  and a c y c l i c ,  
k i n e m a t i c a l l y   h a r d e n i n g   c a p   s o i l   m o d e l .   R e s u l t s   f r o m   t h e  STEALTH simula- 
t i ons   have   been   compared   t o   i den t i ca l   s imu la t ions   pe r fo rmed   w i th   t he  TRANAL 
code. 

INTRODUCTION 

T r a n s i e n t ,   n o n l i n e a r   s o i l - s t r u c t u r e   i n t e r a c t i o n   ( S S I )   s i m u l a t i o n s  
of  an Electr ic  Power Resea rch   In s t i t u t e   (EPRI ) ,  SMQUAKE exper iment   ( re f .  1 )  
were p e r f o r m e d   u s i n g   t h e   l a r g e   s t r a i n ,  t i m e  domain STEALTH 2D code   ( r e f .  2) 
and a c y c l i c ,   k i n e m a t i c a l l y   h a r d e n i n g   c a p   s o i l  model ( r e f .  3). Resul t s   f rom 
t h e  STEALTH s imula t ions   have   been  compared t o   i d e n t i c a l   s i m u l a t i o n s   p e r -  
formed w i t h   t h e  TRANAL code   ( r e f .  4 )  and w i l l  be  compared t o   f i e l d   d a t a  at a 
la ter  t i m e .  

The d e s i r a b i l i t y   o f   u s i n g  a l a r g e   s t r a i n ,   n o n l i n e a r  t i m e  domain 
approach t o  d o   c e r t a i n   t y p e s   o f   S S I   s i m u l a t i o n s   h a s   b e e n   e s t a b l i s h e d   b y  
several i n v e s t i g a t o r s .   I n   p a r t i c u l a r ,  two s t u d i e s   p r i o r   t o   t h i s   o n e  and 
also sponsored  by EPRI have  explored ( 1 )  t h e   l i m i t a t i o n s   o f   t h e   e q u i v a l e n t  
l i n e a r  method (ELM) t o   c a l c u l a t e   l a r g e   s t r a i n   n o n l i n e a r   r e s p o n s e   ( r e f .  5) 
and ( 2 )  t h e   e f f e c t   o f  a s o i l  model t o   a l l ow  fo r   debond ing   and   r ebond ing  
around a r o c k i n g   s t r u c t u r e   ( r e f .  6 ) .  
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A primary  emphasis i n  t h e   c u r r e n t   s t u d y  w a s  t h e   a p p l i c a t i o n   t o  SSI  
s i m u l a t i o n s  of a mesh- in te rac t ion   ( s l ide l ine)   a lgor i thm  deve loped   for   impact  
( r e f .  7 )  and p e n e t r a t i o n   e v e n t s   ( r e f .  8). The i n t e r a c t i o n   a l g o r i t h m  is based 
on   expl ic i t   numer ica l   equa t ions   deve loped   by   Wi lk ins   ( re f .  9) .  The i n t e r a c -  
t i o n   a l g o r i t h m   f o r m u l a t i o n   i n  STEALTH 2D i s  " s t r o n g l y   c o u p l e d "   i n   t h a t   i n -  
t e r f a c e   m o t i o n   e q u a t i o n s  are c e n t e r e d   i n   b o t h  time and  space.  

To s i m u l a t e  SIMQUAKE u s i n g   t h e   i n t e r a c t i o n   a l g o r i t h m ,  a modified 
s o i l   i s l a n d   a p p r o a c h   u s e d   b y   p r e v i o u s   s t u d i e s   ( r e f .  6 )  w a s  adopted.  The 
i n p u t   e x c i t a t i o n   h i s t o r i e s   a r o u n d   t h e   f i c t i t i o u s   s o i l   i s l a n d   b o u n d a r y  were 
obtained by l i n e a r l y   i n t e r p o l a t i n g   t h e   m e a s u r e d  t ime-dependent  ground mot i o n  
d a t a  i n   t h e   f r e e   f i e l d .  A f r e e - f i e l d   c a l c u l a t i o n   u s i n g   c o a r s e  meshes i n  a 
l a r g e  domain t o   o b t a i n   s o i l   i s l a n d   i n p u t   h i s t o r i e s  was t h e r e f o r e   n o t  re- 
qu i r ed .   Fu r the rmore ,   t he   ava i l ab le   measu red   da t a   a round   t he   s t ruc tu re   p ro -  
vided a v a l i d a t i o n   c h e c k  of t h e  STEALTH 2D c o d e   a n d   t h e   i n t e r a c t i o n   a l g o -  
r it hm. 

Seve ra l   t ypes  of a n a l y s e s  were performed. One t y p e  compared calcu-  
l a t i o n s   i n   w h i c h   t h e   s t r u c t u r e  w a s  o m i t t e d   a n d   t h e   e f f e c t s  of t h e   c a p   v e r s u s  
a s imple e l a s t i c  model were considered.   Both  veloci ty   and stress responses  
w i t h i n   t h e  domain  of t h e   s o i l   i s l a n d  were monitored.  These cases provided 
i n s i g h t   i n t o   t h e   t r a n s i e n t  wave c h a r a c t e r i s t i c s   b e t w e e n   l i n e a r   a n d   n o n l i n e a r  
s o i l  models .   These   ca lcu la t ions   a l so   p rovided  a p r e l i m i n a r y  test of t h e  
mesh- in t e rac t ion   l og ic   i n   wh ich   i n t e r f ace   nodes  were c o n s t r a i n e d   t o  act as 
i n t e r i o r   n o d e s .   A n o t h e r   t y p e   o f   a n a l y s i s   i n c l u d e d   b o t h   t h e   s t r u c t u r e   a n d  
t h e   s o i l   ( c a p  and e las t ic )   bu t   d id   no t   a l low  debonding   and   rebonding .  
Again,   veloci ty   and stress r e s p o n s e s   s u r r o u n d i n g   t h e   s t r u c t u r e  were compared 
t o   e a c h   o t h e r  and t o   t h e   p r e v i o u s   c a l c u l a t i o n s   w i t h o u t   t h e   s t r u c t u r e .  Basic 
c h a r a c t e r i s t i c s  of t h e   s o i l - s t r u c t u r e   i n t e r a c t i o n  are r evea led   t h rough   such  
comparisons.  The l a s t   c l a s s  of ca l cu la t ions   i nc luded   t he   compar i son   o f  two 
debonding-rebonding  logics -- one   based   on   the   mesh- in te rac t ion   a lgor i thm 
a n d   t h e   o t h e r  on a cons t i t u t ive   t ens ion -cu to f f   mode l .  

Next are  d e s c r i b e d   t h e  SIMQUAKE f i e l d  tests, t h e   s o i l   i s l a n d  metho- 
dology,   the  STEALTH 2D c o d e ,   a n d   t h e   s l i d e l i n e   l o g i c   u s e d   f o r   v a r i o u s  as- 
p e c t s  of t h e  p r o b l e m .   F i n a l l y ,   t h e   r e s u l t s  of v a r i o u s   c a l c u l a t i o n s  are 
presented . 

DESCRIPTION OF  SIMQUAKE 

The purpose of t h e  SINQUAKE f i e l d - t e s t  series w a s  t o  impose  s t rong 
ea r thquake - l ike   g round   mot ions   on   s t ruc tu ra l   mode l s   i n   o rde r   t o   eva lua te  (1) 
s o i l   r e s p o n s e   c h a r a c t e r i s t i c s   ( t h r o u g h   l a b o r a t o r y   a n d   f i e l d   s t u d i e s )  and ( 2 )  
s o i l - s t r u c t u r e   i n t e r a c t i o n  phenomenology.  For the   former ,   endochronic  (ref. 
10)  and   cap   cons t i tu t ive   models  were d e v e l o p e d ,   w h i l e   i n   t h e  l a t te r  
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ca tegory ,   d i f fe ren t   numer ica l   models  were used t o   p e r f o r m   p r e t e s t   a n d   p o s t -  
test ana lyses .  

The s imula ted   ear thquake  test c o n d i t i o n s  were achieved   by   de tona t ing  
two   p l ana r   a r r ays   o f   exp los ives   i n   such  a way as  t o   y i e l d  several c y c l e s  of 
p l a n a r ,  p- and s-wave mot ion   pas s ing   by   t he   s t ruc tu res .   The   ampl i tudes   and  
f r e q u e n c i e s  of t hese   mo t ions  were chosen t o  approximate a g iven  undamped 
spectrum. A p l a n  view of t h e  two p l a n a r   a r r a y s  of exp los ives   and   f i ve   o f  
t h e   s t r u c t u r a l   m o d e l s   u s e d   i n   t h e   s e c o n d  SIMQUAKE test series is shown i n  
f i g u r e  la. 

Dur ing   t he  tes t ,  measurements were t aken   on   and   nea r   t he   s t ruc tu re  
and i n   t h e   f r e e   f i e l d .   F i g u r e   l b  s h o w s   s c h e m a t i c a l l y   t h e   l o c a t i o n s   o f   t h e  
v a r i o u s   f r e e - f i e l d   b o r e   h o l e s   i n   w h i c h   i n s t r u m e n t s  were l o c a t e d .  It w a s  
i n t e n d e d   t h a t   t h e s e   f r e e   f i e l d   m e a s u r e m e n t s  would be  used as "so i l - i s land"  
input   boundary   condi t ions   for   the   var ious   ca lcu la t ions .   The   measurements  
t a k e n   o n   o r   n e a r   t h e   s t r u c t u r e  were i n t e n d e d   t o   b e   u s e d   t o  val idate  t h e  
codes and ana ly t ic   methodology.  

The s t r u c t u r a l   m o d e l s  were s u b j e c t e d   t o   p l a n a r  test c o n d i t i o n s .  
F igure  2 is  a schematic  of a typ ica l   ax isymmetr ic   s t ruc ture .   The   nominal  
dimensions of t h e   v a r i o u s   s t r u c t u r a l   m o d e l s  are l i s t e d  below. 

S t r u c t u r e  D i amet er Height 

Type ( f t )   ( f t  1 

1 .  15 22-1 12 
2. 10 15 
3. 5 7-1 12 

One each of t h e   t y p e  1, 2 and 3 s t r u c t u r a l   m o d e l s  were imbedded t o  
114 of t h e i r   h e i g h t   i n   t h e   s o i l   u s i n g   n a t i v e   b a c k f i l l .  Two t y p e  2 s t r u c -  
t u r e s  were included -- each a t  a d i f f e r e n t   r a n g e   l o c a t i o n .  A second  type  3 
s t r u c t u r e  w a s  c o n s t r u c t e d   t o  test a seismic i s o l a t i o n   d e s i g n .  A t h i r d   t y p e  
3 model w a s  f r e e   s t a n d i n g   a n d   f i l l e d   w i t h  water t o  test f l u i d - s t r u c t u r e  
i n t e r a c t   i o n .  The d i f f e ren t   cond i t ions   chosen   i n t ended   t o   shed  1 ight   on  
q u e s t i o n s  o f   r e sponse ,   s ca l ing ,   back f i l l   and   dep th   o f   bu r i a l .  

SOIL ISLAND METHODOLOGY 

The s o i l   i s l a n d   a p p r o a c h  i s  a method fo r   coup l ing   f r ee - f i e ld   g round  
motions t o   a n a l y s e s  of s t ruc ture-medium  in te rac t ion .  It a l l o w s   t h e   a n a l y s t  
t h e   f r e e d o m   t o   d e v e l o p   f r e e - f i e l d   g r o u n d   m o t i o n   i n   a n y  manner which is con- 
s i s t en t   w i th   equa t ions   o f   dynamic   equ i l ib r ium.   Th i s   i nc ludes   e i the r   f i e ld  

49 



measurements   or   computat ions  or   both.  The s o i l   i s l a n d   a p p r o a c h   h a s   b e e n  
s u c c e s s f u l l y   a p p l i e d   t o  a range  of   problems  involving wave e f fec t s   on   p ro -  
tect ive s t r u c t u r e s .  

I n   t h e   f i r s t   s t e p  of t h e   s o i l   i s l a n d   a p p r o a c h ,  a f i c t i t i o u s   b o u n d a r y  
is d e s i g n a t e d   i n   t h e   f r e e   f i e l d   w h i c h   s u r r o u n d s   t h e   l o c a t i o n   o f  a s t r u c -  
t u re ;   t he   f r ee - f   i e ld   g round   mot ions   a long   t h i s   boundary  are s t o r e d   f o r  
later u s e .   I n   t h e   s e c o n d   s t e p ,   t h i s   v o l u m e   o f   s o i l   r e f e r r e d   t o  as t h e   s o i l  
i s l a n d  i s  analyzed i n  d e t a i l   u s i n g   t h e   s t o r e d   f r e e - f i e l d   g r o u n d   m o t i o n s  as 
boundary   cond i t ions .   Th i s   r educes   t he   s t ruc tu re -med ium  in t e rac t ion  model 
t o  manageable   s ize .  

The s o i l   i s l a n d   c o n c e p t  w a s  i n i t i a l l y   d e v e l o p e d   t o   a n a l y z e   t h e  
response  of a s u r f a c e - f l u s h   m i l i t a r y   s t r u c t u r e   i n  a l a y e r e d  s i te  subjec ted  
t o   o u t r u n n i n g   g r o u n d   s h o c k   f r o m   t r a v e l i n g   a i r b l a s t   l o a d i n g ,   t o   l o c a l  air- 
blast   induced  ground  motion,  and t o  t h e   a i r b l a s t   i t s e l f .  The  outrunning 
response   conta ined   predominant ly   low  f requencies   because   the   h igh   f requency  
component was f i l t e r e d   o u t   b y   p r o p a g a t i o n   o v e r   l o n g   d i s t a n c e s   t h r o u g h   h y s -  
t e re t ic  s o i l .  To a p p l y   t h e   s o i l   i s l a n d  method t o   t h i s  case, the   ou t runn ing  
motion w a s  c a l c u l a t e d   w i t h  a coa r se   g r id   ( adequa te  up t o  about 1 Hz) which 
extended  about 3 miles i n   l e n g t h  and  about 1 m i l e  i n   d e p t h .  A f i c t i t i o u s  
s o i l   i s l a n d  was def ined  and  motions on its boundary were s tored .   These  
were s u b s e q u e n t l y   a p p l i e d   t o   t h e   b o u n d a r i e s  of a s o i l   i s l a n d ,   w h i c h   i n c l u d -  
ed t h e   s t r u c t u r e .  The s o i l   i s l a n d   c o n s i s t e d  of s u f f i c i e n t l y  small e lements  
to i n s u r e   t h a t  the h igh   f requency   response   (up   to   about  30 Hz),  produced  by 
the a i r b l a s t   a n d   t h e   l o c a l   a i r b l a s t   i n d u c e d   g r o u n d   m o t i o n ,  was p r o p e r l y  re- 
presented .  

A m o d i f i c a t i o n   o f   t h e   s o i l   i s l a n d   a p p r o a c h  is adopted when s imulat-  
i n g  a phys ica l   exper iment   such  as  t h e  SDlQUAKE series of f i e l d  tests. I n  
t h i s  case t h e   f r e e - f i e l d   c a l c u l a t i o n  is e l imina ted   and   f r ee - f i e ld   ve loc i ty  
and   acce le ra t ion   gages  are i n s t a l l e d  on t h e   b o u n d a r i e s   o f   t h e   f i c t i t i o u s  
soil i s l and .   Af t e r   p rocess ing ,   t he   t ime-phased   r eco rds  are used f i r s t  as  
i n p u t   t o  a c a l c u l a t i o n   o f   t h e   r e s p o n s e   o f  a s o i l   i s l a n d   w i t h o u t   s t r u c t u r e .  
The  motions i n   t h e   i n t e r i o r   o f   t h i s   s o i l   i s l a n d   c a n   b e  compared  with  f ree-  
f ie ld   measurements  a t  co r re spond ing   l oca t   i ons .   The   deg ree   o f   f avorab le  
compar i son   g ives   va luab le   i n s igh t   i n to   t he   adequacy   o f   t he  s i t e  model. 
Then t h e   s t r u c t u r a l  model is i n s e r t e d   i n t o   t h e   s o i l   i s l a n d  and the   p ro -  
cedure is repeated t o   o b t a i n   s o i l - s t r u c t u r e   r e s p o n s e .  Due t o   p r a c t i c a l  
l i m i t a t i o n s  on t h e  number of   channels   o f   ins t rumenta t ion ,   there  are never  
input  time h i s t o r y   r e c o r d s  a t  a l l  mesh p o i n t s   o n   t h e   s o i l   i s l a n d   b o u n d a r i e s  
as  is  r e q u i r e d   f o r   t h e   s o i l   i s l a n d   a n a l y s i s .   S t u d i e s   i n v o l v i n g   i n p u t   f r o m  
c o a r s e  mesh f r e e - f i e l d   c a l c u l a t i o n s   i n t o   f i n e  mesh s o i l   i s l a n d   m o d e l s   i n d i -  
cate t h a t   s a t i s f a c t o r y   i n p u t   m o t i o n  a t  a f i n e  mesh node   can   be   ob ta ined  by 
l i n e a r   s p a t i a l   i n t e r p o l a t i o n   b e t w e e n   t h e  two   ad jacen t   coa r se  mesh nodes. 
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Comparison  between  motions i n   t h e   i n t e r i o r   o f   t h e   s o i l   i s l a n d  and a t  
c o r r e s p o n d i n g   p o i n t s   o f   t h e   p a r e n t   f r e e - f i e l d   c a l c u l a t i o n ,   i l l u s t r a t e s   t h e  
success   of   the   method.  

Regard less   o f   the   methods   used   to   def ine   f ree- f ie ld   g round  mot ion ,  
t h e   s e c o n d   s t e p   i n   t h e   s o i l   i s l a n d   a p p r o a c h  is t o   d e s i g n a t e   f i c t i t i o u s   s o i l  
i s l a n d s   s u r r o u n d i n g   p o s s i b l e   s t r u c t u r e s  of i n t e r e s t .   T h e   f r e e - f i e l d  
v e l o c i t y - t i m e   h i s t o r i e s  at a l l  p o i n t s  on the   boundary   o f   t he   i s l and  are 
s t o r e d   f o r   f u t u r e   u s e .   T h e   b o u n d a r i e s   o f   t h i s   i s l a n d  are chosen   su f f i -  
c i e n t l y   f a r   f r o m   t h e   e v e n t u a l   p o s i t i o n   o f   t h e   s t r u c t u r e   t h a t ,  when it is 
included,  i t  causes   on ly  a s l igh t   pe r tu rba t ion   o f   t he   boundary   mo t ion .  Of 
cour se   t he   boundar i e s  must b e   c h o s e n   c l o s e   e n o u g h   t o   t h e   s t r u c t u r e   t o   e n s u r e  
that  t h e  eventual s t ructure-medium  interact ion  problem i s  of manageable   s ize .  

I The f i n a l   s t e p  is t o  a p p l y   t h e   f r e e - f   i e l d   m o t i o n s   t o   t h e   b o u n d a r i e s  
of a s o i l   i s l a n d   i n c l u d i n g   t h e  model  of t h e   s t r u c t u r e .   S i n c e   t h e   s o i l  
model is t h e  same i n   t h e   i s l a n d  and i n   t h e   f r e e   f i e l d  , t h e  t i m e  phasing of 
t h e   a p p l i e d   m o t i o n  would e x a c t l y   s a t i s f y   t h e  wave equat ions   govern ing  mo- 
t i o n   w i t h i n   t h e   i s l a n d   i f  it were n o t   f o r   t h e   s t r u c t u r e ,   w h i c h   d i s t u r b s   t h e  
f r ee - f i e ld   mo t ions   i n  two  ways. F i r s t ,   t h e r e  is s c a t t e r i n g  of waves which 
i s  caused by t h e  impedance  mismatch  between t h e   s o i l  and t h e   s t r u c t u r e .  
A l though   t he   au tho r s  are unaware  of p r i o r  work  which  would  shed  light  on 
t h e  wave l e n g t h s   a s s o c i a t e d   w i t h   t h e   s c a t t e r e d  waves, i t  i s  s p e c u l a t e d   t h a t  
they  are   determined  by  the  input   ground  motion and poss ib ly   by   t he   cha rac -  
t e r i s t i c  length   and  embedment depth   o f   the   s t ruc ture .   The   second  type   o f  
d i s t u r b a n c e   a r i s e s   f r o m   w a v e s   i n d u c e d   i n   t h e   s o i l  by mot ion   of   the   s t ruc-  
t u r e ,   s u c h   a s   r o c k i n g  and r e l a t i v e   t r a n s l a t i o n ,   w h i c h  is commonly recog- 
nized as s t ruc ture-medium  in te rac t ion .  The wave l e n g t h s   a s s o c i a t e d   w i t h  
these   d i s tu rbances   p re sumab ly  are governed   by   the   per iods  of t h e   p r i n c i p a l  
modes of   s t ruc ture-medium  in te rac t ion .   In  some approaches ,   nonre f l ec t ing  
boundaries  are used to   abso rb   bo th   t ypes   o f   waves  s o  t h a t   t h e y  are n o t  
reflected back t o   t h e   s t r u c t u r e  and  become confused   wi th   the   p r imary  
s t ruc ture-medium  in te rac t ion .  One b e n e f i t  of  an  energy  absorbing  boundary 
i s  t h a t   t h e   b o u n d a r i e s  may be  moved c l o s e   t o   t h e   s t r u c t u r e   w i t h   r e s u l t i n g  
sav ings   in   computer  t i m e .  

I n   t h e   s o i l   i s l a n d   a p p r o a c h ,   t h e   i s l a n d  is presumed t o   b e   s u f f  i- 
c i e n t l y   l a r g e   t h a t   r e f l e c t i o n s   b e t w e e n   t h e   b o u n d a r i e s   a n d   t h e   s t r u c t u r e  are 
small. R e l i a n c e  is  placed on d i s p e r s i o n ,   g e o m e t r i c a l   a t t e n u a t i o n   a n d  ab- 
sorp t ion   of   energy   by  material damping t o   r e d u c e   t h e   e r r o r   t o   a n   a c c e p t a b l e  
level.  

A .  s i m p l e  s i te  model i n v o l v i n g   u n i f o r m   p r o p e r t i e s   o r   h o r i z o n t a l  
l ayer ing   and   un i form  hor izonta l   bedrock   mot ion  w a s  a d o p t e d   f o r   t h i s   s t u d y .  
Though t h i s  is  n o t   n e c e s s a r i l y  a complete   picture   of   ear thquake  ground 
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motion, it is  never the less   one   which  is f a m i l i a r   t o  many w o r k e r s   i n   t h e  
area o f   f i n i t e   e l emen t   s imu la t ion   o f   s t ruc tu re -med ium  in t e rac t ion .  It is 
a l s o   s i m p l e ,   w h i c h   h e l p s   i n   i d e n t i f y i n g   s t r u c t u r e - m e d i u m   i n t e r a c t i o n   e f -  
f ects . 

STEALTH 2D AND SLIDELINES 

STEALTH  2D is  a t w o - d i m e n s i o n a l ,   l a r g e - s t r a i n ,   e x p l i c i t   f i n i t e -  
difference  Lagrange  computer   code.   The most impor t an t   f ea tu re   o f  STEALTH 
2D t h a t  w a s  tested i n   t h e  SIMQUAKE s i m u l a t i o n s  w a s  t h e   m u l t i g r i d   s l i d e l i n e  
c a p a b i l i t y .   S l i d e l i n e  i s  a n   h i s t o r i c a l  term w h i c h   i d e n t i f i e s   t h e   l o g i c  
n e c e s s a r y   t o   c o u p l e   t w o   o b j e c t   m e s h e s   t o g e t h e r   t o   s i m u l a t e  a p e n e t r a t i o n   o r  
i m p a c t  even t   i n   wh ich   r e l a t ive   s l i d ing ,   debond ing   and   r edebond ing   occu r s .  
Numer ica l ly   t h i s  means t h a t   e a c h  of t h e   i n t e r a c t i n g   o b j e c t s   g e t s  i t s  i n t e r -  
f ace   boundary   cond i t ions   f rom  the   o the r   ob jec t .  When re la t ive  motion 
b e t w e e n   t h e   o b j e c t s   o c c u r s ,   i n t e r f a c e   b o u n d a r y   n o d e   l o c a t i o n s   o n   o n e   o b j e c t  
d o   n o t   n e c e s s a r i l y   c o i n c i d e   w i t h   t h e   l o c a t i o n s  of in te r face   boundary   nodes  
o n   t h e   o t h e r   o b j e c t  . I n   s c e n a r i o s  of re la t ive s l i d i n g  , t h e   l o c a t   i o n s  of 
in te r face   boundary   nodes  are cons t an t ly   chang ing .   In  cases in   which   de-  
bonding and rebonding  occur , t he   i n t e r f ace   boundary   nodes  are no t   on ly  
c h a n g i n g   t h e i r   p o s i t i o n   a l o n g   t h e i r   r e l a t i v e   i n t e r f a c e   b u t  are  o f t en   spaced  
by r e g i o n s  of  void. 

S l i d e l i n e s  are a l s o   u s e d   t o   e f f e c t  a d i scon t inuous   change   i n   noda l i -  
z a t i o n   w i t h i n  a p a r t i c u l a r  material. T h i s   c a p a b i l i t y  is ca l led  " t i e d  s l i d -  
ing"  because  nodal   points  are t i e d   t o   t h e   s l i d e l i n e ,   t h a t  is , n o   r e l a t i v e  
s l i d ing   o r   debond ing  is a l l o w e d   a f t e r   t h e   o r i g i n a l   p l a c i n g  of t h e   i n t e r f a c e  
nodes.  The  nodes act  as i f   t h e y  were i n t e r i o r   n o d e s .   F i g u r e  3 shows an 
example  of t i e d  s l i d i n g   n o d e s .  

F o r   t h e  SIMQUAKE s o i l   i s l a n d   g e o m e t r y ,   t h e r e  are a number of  ways i n  
which STEALTH 2D c a n   b e   u s e d   t o  model t h e   e v e n t .   E a c h   h a s   d i s t i n c t   p h y s i c a l  
and  economic  advantages  and  disadvantages.   The  s implest ,  most rudimentary 
u s e  of STEALTH 2D d o e s   n o t   r e q u i r e   s l i d e l i n e s .   I n   t h i s  case, a r e c t a n g u l a r  
domain is  chosen  which is bounded by t h e   s o i l   i s l a n d   b o u n d a r i e s  on t h e   b o t -  
tom  and  two s i d e s  and a h o r i z o n t a l   f r e e   s u r f a c e   b o u n d a r y  a t  t h e   e l e v a t i o n  of 
t h e   t o p  of t h e   s t r u c t u r e .   T h i s  is shown i n   f i g u r e  4a. One g r i d  is  used 
wh ich   i nc ludes   exp l i c i t  a i r  ( v o i d )   r e g i o n s  on e i t h e r  s i d e  o f   t h e   s t r u c t u r e  
and  above t h e  ground  sur face .   This  model has  one  major  economic  disadvan- 
t a g e  -- t h a t  of  having t o  compute a i r  nodes ,   which   could   jus t  as e a s i l y   b e  
handled by us ing   an   appropr ia te   boundary   condi t ion   and  by u s i n g   t w o   g r i d s  
c o u p l e d   t h r o u g h   o n e   t i e d   s l i d e l i n e   t o   d e f i n e   t h e   s t r u c t u r e .   F i g u r e  4b  shows 
t h i s   a r r a n g e m e n t .   N e i t h e r   t h e  mesh i n   f i g u r e  4 a   n o r   t h e   o n e   i n   f i g u r e  4b 
al lows  for   debonding  and  rebonding of t h e   s t r u c t u r e .   T h e s e   e f f e c t s   c a n   b e  
h a n d l e d   t h r o u g h   s p e c i a l   l o g i c   i n   t h e   c o n s t i t u t i v e  model f o r   t h e   s o i l   z o n e s  
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n e x t   t o   t h e   s t r u c t u r e .   T h e s e   z o n e s   c a n  be made v e r y  small .(by STEALTH mesh), 
and   the   t ens ion-cutof f  and recompress ion   cons t i tu t ive   parameters   can   be  
chosen t o   g i v e   t h e   e f f e c t   o f   g a p   r e g i o n s .  One set o f   c a l c u l a t i o n s  w a s  pe r -  
formed  us ing   the  STEALTH mesh. A d i s a d v a n t a g e   t o  t h i s  approach can o c c u r   i f  
t h e  "gap" zones are s o  small t h a t   t h e y   c o n t r o l  the t i m e  st.ep. In  SIMQUAKE, 
t h i s  w a s  n o t   t h e  case -- t h e   z o n e s  i n  the v e r y   s t i f f   s t r u c t u r e   c o n t r o l l e d   t h e  
time s t e p .  I 

! 

Another  approach  for  modeling  debonding  and  rebonding  involves mul- 
t i p l e   g r i d s   c o n n e c t e d  by both  t i e d  and f r e e   s l i d e l i n e s .  Several v a r i a t i o n s  
of t h i s   a p p r o a c h  are shown i n   f i g u r e s  5a and  5b.  The v a r i a t i o n  shown i n  
f i g u r e  5a was used i n  several SIMQUAKE s i m u l a t i o n s .   S l i d e l i n e  #1 is  t i e d  
and is used t o   e f f e c t  a change   i n   zon ing .   S l ide l ine  #2 is l o c a t e d  at a 
d e p t h   c o i n c i d e n t   w i t h   t h e   b o t t o m   o f   t h e   s t r u c t u r e .  The noda l i za t ion   above  
and  below s l i d e l i n e  112 is  ident ica l   bu t   debondingl rebonding  is allowed t o  
occur at t h e   b a s e  of t he   s t ruc tu re .   Eve rywhere  else t h e   s l i d e l i n e  is t i e d .  
A t h i r d   t i e d   s l i d e l i n e   e x i s t s  a t  t h e  ground  sur face   connec t ing   the   bo t tom 
1 / 4  of t h e   s t r u c t u r e   t o   t h e   t o p  3 / 4 .  A p o t e n t i a l   f l a w  of t he   approach  shown 
i n   f i g u r e   5 a  is t h a t  no kinematic  debonding is a l l o w e d   a t   t h e  s ides  of t h e  
s t r u c t u r e .   I f  it i s  necessa ry   t o   ach ieve   debond ing  a t  t h e s e   l o c a t i o n s ,   t h e n  
zone  gap  models  would  again  be  necessary.  

To have  kinematic  debonding a l l  a r o u n d   t h e   s t r u c t u r e  would r e q u i r e  
t h e  mesh shown i n   f i g u r e  5b. Here, s l i d e l i n e  #1 is  t h e  same as i n   f i g u r e  
5 a ,   b u t   s l i d e l i n e  #2 is placed a t  t h e   s u r f a c e  of t h e  ground  and  around t h e  
s t r u c t u r e  as  shown. This   arrangement   has   two  advantages  over   the  previous 
one -- it  w i l l  r e q u i r e   s l i g h t l y  less computer t i m e  b e c a u s e   t h e r e  are fewer 
t o t a l   n o d e s  and t h e r e  is no need   for   gap   zones .  The d isadvantages  are t h a t  
t h e   z o n e s   a r e   n o t   r e c t a n g l e s   a n d  are less a c c u r a t e   t h a n   t h e i r   r e c t a n g u l a r  
e q u i v a l e n t s .  

Two o t h e r  STEALTH 2D op t   i ons   wh ich   can   s ign i f i can t ly   r educe   cos t   and  
poss ib ly   i nc rease   accu racy  are ava i lab le .   The   pr imary   assumpt ion   requi red  
i s  t h a t   t h e   s t r u c t u r e   c a n   b e   t r e a t e d  as a r i g i d  body. I n  a l l  t h e  meshes 
shown so  f a r ,  the t i m e  s t e p  is c o n t r o l l e d  by z o n e s   i n   t h e   s t r u c t u r e .  The 
sound  speed i n   t h e   s t r u c t u r e  is abou t   t en  times t h a t  of t h e   s o i l ,  s o  t h a t  
f o r   e q u i v a l e n t l y   s i z e d   z o n e s ,   t h e   g l o b a l   ( p r o b l e m )  t i m e  s t e p  i s  l / l O t h  of 
wha t   wou ld   be   r equ i r ed   fo r   t he   so i l  were it  t o   c o n t r o l   t h e   g l o b a l  t i m e  s t e p .  
Assuming t h a t   t h e   s t r u c t u r e  is a t  least  e l a s t i c  and a l m o s t   r i g i d   , a l l o w s   f o r  
t w o   o p t i o n s   t o   b e   c o n s i d e r e d  -- ( 1 )  s u b c y c l i n g   t h e   n o d a l i z e d   s t r u c t u r e  a t  
i ts  smaller t i m e  s t e p   o r  ( 2 )  us ing  a r i g i d  body  model f o r   t h e   s t r u c t u r e .  

One approach   u s ing   t he   r i g id   body   a s sumpt ion   fo r   t he   s t ruc tu re  is 
shown i n   f i g u r e  6 .  F i g u r e  6 is a v a r i a t i o n   o f   f i g u r e   5 b ,   i n   w h i c h   t h e   f l e x -  
i b l e   s t r u c t u r e  i s  r e p l a c e d  by a r i g i d  body  model. 
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DESCRIYTION  OF  CALCULATIONS 

S e v e r a l  SINQUAKE c a l c u l a t i o n s   h a v e   b e e n   p e r f o r m e d   u s i n g   t h r e e   d i f -  
f e r e n t   c o d e s  -- TRANAL,  FLUSH ( r e f .  11) and STEALTH  2D. The r e s u l t s  
presented  i n  t h i s   p a p e r  are p r i m a r i l y   f r o m   t h e  STEALTH 2D c a l c u l a t i o n s .  
However, t h e  STEALTH r e s u l t s   h a v e   b e e n   c o m p a r e d   t o   r e s u l t s  from TRANAL, s o  
where   necessary ,  TRANAL r e s u l t s  are a l s o   p r e s e n t e d .  TRANAL and STEALTH are 
b o t h   e x p l i c i t  t i m e  domain  codes.  Though TRANAL i s  a f inite-element  code  and 
STEALTH is a f i n i t e - d i f f e r e n c e   c o d e ,   t h e   o n l y   m a j o r   d i f f e r e n c e  is t h a t  
TRANAL u t i l i z e s  a small s t r a i n   a s s u m p t i o n   w h i l e  STEALTH does   no t .  

Table  1 summarizes t h e   c a l c u l a t i o n s   p r e s e n t e d   i n   t h i s   p a p e r .   T h e s e  
i n c l u d e  several v a r i a t i o n s   o f   t h e  same boundary  condi t ions  and  geometry  in  
o r d e r   t o   d e t e r m i n e  among o t h e r   t h i n g s ,   t h e   e f f e c t  of ( 1 )  material p r o p e r t i e s  
and ( 2 )  debonding-rebonding  logic.  Two material models were used -- elastic 
and  kinematic  cap. Two debonding-rebonding  logics were used -- one  involved 
a t ens ion -cu to f f   pa rame te r   i n   t he   cap  material mode l   wh i l e   t he   o the r   u sed  a 
d i s t i n c t   k i n e m a t i c   s u r f a c e .  

I n   o r d e r   t o   v e r i f y   t h e  STEALTH 2D t i e d   s l i d i n g   l o g i c ,   t h r e e   f r e e  
f i e l d   c a l c u l a t i o n s  were made. T h e s e   c a l c u l a t i o n s   u s e d   t h e  same s o i l  i s l a n d  
v o l u m e   b u t   s l i g h t l y   d i f f e r e n t   b o u n d a r y   c o n d i t i o n s   f r o m   t h o s e   u s e d   i n   s u b s e -  
quent SSI  c a l c u l a t i o n s ,   i n   w h i c h   t h e   s t r u c t u r e  was i n c l u d e d   i n   t h e  mesh. 
F igu re   7a  shows t h e  mesh used  both  by TRANAL and  by STEALTH. Figure  7a  has  
n o   s l i d e l i n e s .   F i g u r e  7b i s  t h e  STEALTH mesh  which makes u s e . o f   t i e d   s l i d i n g  
i n   o r d e r   t o   g e t  a g r e a t e r  number o f   z o n e s   i n   t h e   r e g i o n   w h e r e   t h e   s t r u c t u r e  
w i l l  b e   p l a c e d .   N o t i c e   t h a t   i n   b o t h  cases t h e   s o i l   i s l a n d   b o u n d a r y   n o d e s  
are i d e n t i c a l .  

R e s u l t s   f r o m   t h e s e  cases f o r   t h e  e las t ic  material model are shown i n  
f i g u r e s  8a and  8b.  These are v e l o c i t y   h i s t o r i e s  a t  t h e  A and B l o c a t i o n s ,  
r e s p e c t i v e l y ,   n o t e d   i n   f i g u r e s  7. 

The next  set o f   c a l c u l a t i o n s   t h a t  were per formed  inc luded   the   s t ruc-  
t u r e .  The TRANAL and STEALTH meshes are  shown i n   f i g u r e s   9 a  and  9b.  These 
two   meshes   u se   gapp ing   l og ic s   i n   t he   t h in   zones   bo rde r ing   t he   s t ruc tu re .  
Two o t h e r  STEALTH meshes 'were shown i n   f i g u r e s  5a and  5b.  Figure 5a 
d i s p l a y e d  a g r id   wh ich   u ses  a h o r i z o n t a l   s l i d e l i n e  a t  t h e   b a s e   o f   t h e   s t r u c -  
t u r e .   I n   f i g u r e   5 b ,  a s l i d e l i n e   s e p a r a t i n g   t h e   e n t i r e   s t r u c t u r e   f r o m   t h e  
s o i l  was u s e d .   C h a r a c t e r i s t i c   r e s u l t s   f r o m   t h e s e  cases are shown i n   f i g u r e  
10. Due t o  p a g e   l i m i t a t i o n s   f o r   t h i s   p a p e r ,   o t h e r   c o m p a r i s o n s  are n o t  
shown.  The r e s u l t s  shown are t y p i c a l .  Detailed r e s u l t s  w i l l  b e   a v a i l a b l e  
i n   t h e   n e a r   f u t u r e  as an EPRI  p u b l i c a t i o n .  
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I CONCLUSIONS AND SWARY 

The r e s u l t s  shown i n d i c a t e   r e l a t i v e l y  good  agreement  between a l l  
t h e  STEALTH and TRANAL c a l c u l a t i o n s .  The d i f f e r e n c e s   t h a t  are seen  can 
probably be a t t r i b u t e d   t o  ( 1 )  l a r g e  (STEALTH) vs small (TRANAL) s t r a i n   f o r -  
mulat ion  and/or  ( 2 )  g r i d   d i s c r e t i z a t i o n   d i f f e r e n c e s .  
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TLBLE 1. - SU4MARY  OF  CALCULATIONS  PRESENTED 

Type - Code Comments 

F r e e   F i e l d  TRANAL elast ic  
F r e e   F i e l d  STEALTH  2D elastic 
F r e e   F i e l d  STEALTH 2D elast ic ,  w i t h   t i e d   s l i d e l i n e s  
SSI TRANAL k inemat ic   cyc l ic   cap ,   gapping  

SSI STEALTH 2D k inemat i c   cyc l i c   cap ,   gapp ing  

SSI STEALTH 2D k i n e m a t i c   c y c l i c   c a p ,   r i g i d  body 

elements   (Figure  9a)  

zones  (Figure  9b) 

debonding/rebonding  (Figure 6 )  
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(b) Vertical cut through  SIMQUAKE I1 centerline. 

Figure 1.- SIMQUAKE  I1 field  test. 
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Figure 2.- Typical scaled  structure. 

Figure 3.- Two-dimensional  multi-grid  example. 
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(a) Schematic using  no slidelines and one grid. 
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(b) Schematic using one slideline and two  grids. 

Figure 4.- Schematics of SIMQUAKE mesh. 

60 



free slide line  tied slideline +3 

tied 
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(a) At bottom of flexible structure only. 
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(b) All around flexible structure. 

Figure 5.- Debonding/rebonding of  a flexible structure. 

rigid  body wall 
interaction line 

Figure 6 . -  Debonding/rebonding all around rigid  structure. 
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(a) TEUNAL and STEALTH free  field,  soil  island  mesh 
using no slidelines. 

B 

\ 
- t ied slidelines 

(b)  STEALTH free field, soil island mesh using two tied  slidelines. 

Figure 7.- TRANAL and STEALTH free fields. 

62 



TRANAL STEALTH 

40.0 4 

m 
W s 
e 
4 
v 

4 
0 

3 
al 
P 

x 

4 
rn 
Y 
C 

-* 
U 
0 zz 

0.0 

-10.0 

-20 .o ~ 

-30.0 

n 

I I 

0.0 1.0 2 . 0  3.0 

Ill1 I I I I  I I I I  IIII I I I I  

I I I -45 .O time (sec) 
0 . 0  1 .o 2 . 0  3 .O 

time  (sec) 

(a) Horizontal velocity histories for 3.0 seconds from TRANAL 
and STEALTH output at location A (see Fig. 7). 

1 5 . 0 i  10.0 ~ 

5-01 0 .o 

-10.0 -5-03 
-15.0 4 

STEALTH 

coarse  mesh 

0 .o 0.5 1 .o 

STEALTH 
fine  mesh 

0 
W 
VI 

U 

a 

W 

-5 
4 
v 

15.0 

10.0 

5.0 

0.0 

-5.0 

-10.0 

-15.0 

0.0 0.5 1 .o 
time (sec) time (sec) 

(b) Vertical velocity histories for 1.0 second from two STEALTH 
meshes at location B (see  Fig. 7). 

Figure 8.- Comparison of velocity histories for elastic free field 
simulations. 
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(a) TRANAL mesh. 
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(b) STEALTH mesh. 

Figure 9.- Comparison of TRANAL and STEALTH meshes  with gapping 
elements, or zones, next to flexible structure. 
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COMBUSTION - STRUCTURAL INTERACTION I N  

A VISCOELASTIC MATERIAL* 
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SUMMARY 

The e f f ec t   o f   i n t e rac t ion  between  combustion  processes  and  structural 
deformation of  so l id   p rope l lan t  w a s  considered. The combustion  analysis w a s  
performed  on  the  basis  of  deformed  crack  geometry, which was determined from 
the   s t ruc tu ra l   ana lys i s .  On t h e   o t h e r  hand ,   input   da ta   for   the   s t ruc tura l  
ana lys i s ,   such   as   p ressure   d i s t r ibu t ion   a long   the   c rack   boundary   and   ab la t ion  
v e l o c i t y  of the   c rack ,  were determined  from  the  combustion  analysis. The i n t e r -  
ac t ion   ana lys i s  w a s  conducted by combining two computer codes, a combustion 
analysis  code and a general   purpose  f ini te   e lement   s t ructural   analysis   code.  

INTRODUCTION 

In  recent   years ,  much at tent ion  has   been  focused on the   inves t iga t ion  of  
the   coupl ing   e f fec t  between  combustion phenomenon and mechanical  behavior  of  solid 
propel lant .  The so lu t ion   of  problems  of th i s   type   can   fur ther   be t te r   unders tand-  
ing of t h e   t r a n s i e n t  combustion  processes  inside  solid  propellant  cracks, which 
may s igni f icant ly   a f fec t   the   per formance  of a rocket  motor. The combustion pheno- 
menon ins ide   the   c rack   of   so l id   p rope l lan t  is  strongly  influenced by the  crack 
geometry a s   t h e  material i s  being deformed  and  burned away. Generally,   there are 
two major   reasons  for   a l terat ion  of   the  crack geometry: 1) mass l o s s  due t o  
g a s i f i c a t i o n  of propel lant   surface  a long  the  crack  during  the  combust ion  process ,  
and 2 )  mechanical  deformation  of  the  propellant due to   p ressure .  

On one  hand,  both  the  burning rate and  mechanical  deformation a r e  governed 
by pressure   ac t ing  on the   c rack   sur face .  On the   o the r  hand, a change i n   c r a c k  
s i z e  w i l l  cause   the   p ressure   d i s t r ibu t ion   to   vary .  The p res su re   d i s t r ibu t ion  
will strongly  influence  the  deformation and stress concentration a t  the   c rack  

*Research  sponsored by t h e  Power Program  of the  Off ice   of  Naval Research  Arlington, 
Va .  , under  Contract No. N00014-79-C-0762.  The support  of D r .  R. S. Miller is  grate- 
f u l l y  acknowledged. A p a r t   o f   t h i s  work w a s  performed  under a previous  contract  
sponsored by D r .  R. L. Derr of NWC. H i s  support is also  appreciated.  
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t i p ,  which i n   t u r n  w i l l  a f f e c t   t h e  manner of  the  crack  propagation. It is ,  
therefore ,   apparent   tha t   the   p ressure   d i s t r ibu t ion   and   the   change   in   c rack  geo- 
metry are strongly  interdependent.  

In   the  past ,   combust ion and s t ruc tura l   ana lyses   o f   so l id   p rope l lan t  were 
conducted  independently,  with  the result t h a t   i n t e r a c t i o n   e f f e c t s  were completely 
ignored. As noted  above,   such  interact ion  effects   can  be  qui te   important ,   especi-  
a l l y  when the  deformation is l a r g e  as compared to   the  or iginal   crack-gap  width.  
The deformation  response  of  the material is categorized as l i n e a r l y   v i s c o e l a s t i c .  
It is, the re fo re ,   t he   i n t en t  of t h i s   pape r   t o   p re sen t  a method o f   ana lys i s   fo r   t he  
combust ion-s t ruc tura l   in te rac t ion   in  a l i n e a r   v i s c o e l a s t i c  medium. To t h i s   e n d ,  
three  major  tasks are involved:  1)  combustion  analysis  to model t h e   t r a n s i e n t  
combust ion  process ,   2)   viscoelast ic   analysis   in   conjunct ion  with moving boundary, 
and 3)  l inkage of t h e  two analyses.  

For t h e  combust ion  analysis ,   invest igat ions  of   cer ta in   aspects   of  combustion 
processes  have  been made. Taylor  [ l]   conducted  experimental  tests to   s tudy   t he  
convective  burning  of  porous  propellants  with  closed-  and open-end boundary  condi- 
tions.  Belyaev e t  a l .  [2] showed that   the   burning  of   propel lant   inside a narrow 
pore may lead  to   an  excess   pressure  bui ldup.   In  a la ter   s tudy,   Belyaev e t  a l .  [3] 
made a series of  experimental tests to  determine  the dependence  of  flame-spreading 
rate on crack  geometry,  propellant  properties,  boundary  conditions,  and  combustion 
chamber pressures.  Cherepanov [ 4 ]  s t a t e d   t h a t   a s  a r e s u l t  of t h e  impeded gas  flow 
i n  a suff ic ient ly   narrow  and  long  cavi ty ,   the   pressure  reaches  such  high  values  
that   the   system becomes unstable.  From h i s  work,  Godai  [SI ind ica ted   tha t   there  i s  
a threshold  diameter   or   cr i t ical   width  of  a uniform  cavity below  which  flame w i l l  
not  propagate  into  the  crack. Krasnov et  a l .  [6]   inves t iga ted   the   ra te   o f  pene- 
t r a t i o n  of  combustion i n t o   t h e   p o r e s  of  an  explosive  charge.  Jacobs e t  a l .  [7,8] 
s tudied   the   p ressure   d i s t r ibu t ion   in   burn ing   c racks   tha t   s imula te   the   debonding  
of sol id   propel lant   f rom  the  motor   casing.  

Although results  of  previous  experiments were of i n t e r e s t ,  no sound  theore- 
t i c a l  model was developed.   In   this   s tudy,  a t h e o r e t i c a l  model was establ ished 
f o r   p r e d i c t i n g   r a t e  of f lame  propagat ion,   pressure  dis t r ibut ion,  and pressuriza- 
t i on  rate ins ide   the   c rack .  Two sets of  coupled p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  
were obtained: one  from mass, momentum, and energy  conservation  of  the  gas  phase 
of the  propel lant   product   in   the  void  region  adjacent   to   the  crack  surface;   the  
o the r  from consideration  of  solid-phase  heat  conduction. Due to  the  mathematical  
complexity of governing  equations  and  boundary  conditions  involved,  the  finite 
d i f fe rence  method w a s  used to   obtain  the  solut ion  for   the  combust ion  analysis .  
In   the  numerical   solut ion,   the   boundary  condi t ions,  which vary  with time, are 
s p e c i f i e d   i n  terms of the  changing  crack  geometry, which i n   t u r n  i s  found  from the 
s t ruc tura l   ana lys i s .   In   addi t ion ,   the   p ressure   d i s t r ibu t ion   a long   the   c rack   sur -  
face,   varying as a funct ion of time, was obtained  from  the  analysis  and w a s  used 
as i n p u t   f o r   t h e   s t r u c t u r a l   a n a l y s i s .  

For   s t ruc tura l   ana lys i s ,   d i f fe ren t   approaches   have   been   taken   prev ious ly  
in   so lv ing   ( ana ly t i ca l ly   o r   numer i ca l ly )   s eve ra l  moving boundary  problems i n   l i n e a r  
v i s c o e l a s t i c i t y .  Lee e t  a l .  C9l obtained a s o l u t i o n   f o r   t h e   p r e s s u r i z a t i o n  of 
an  annihi la t ing  viscoelast ic   cyl inder   contained by a n   e l a s t i c   c a s i n g   i n  which 
the   mater ia l  w a s  assumed t o  be a Kelvin model i n   s h e a r  and incompressible  in  bulk.  
Arenz e t  a l .   [ l o ]  performed a s i m i l a r   a n a l y s i s   f o r  a sphere.  Corneliussen e t  
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al .  [11,12] presented   so lu t ions   for  a sp inning ,   annih i la t ing ,   v i scoe las t ic  
cyl inder   with  f ree   outer  boundary.  Since the   cons t ra in ing  case w a s  not  included 
i n   t h e i r   a n a l y s e s ,   t h e  stress d i s t r i b u t i o n  was independent  of  the material pro- 
p e r t i e s .  With the  assumption of a standard linear s o l i d  model,  Shinozuka [13] 
presented   the   ana ly t ica l   so lu t ion   for  a case-bonded p res su r i zed   v i scoe la s t i c  
cyl inder .  More general ized  solut ions were obtained by Rogers e t  a l .  [14] f o r  a 
class o f   l i n e a r   v i s c o e l a s t i c  problems by using  the  numerical   in tegrat ion scheme. 
Schapery [15] also  developed a general  method for   so lv ing  moving boundary  problems. 
In   h i s   approach ,   the  moving boundary  condition w a s  replaced by a f i c t i t i o u s  non- 
moving boundary  subjected  to a time-dependent pressure.  Later, Christensen e t  
al .  [16] obtained a series s o l u t i o n   f o r   t h e  stresses of t h e  same problem. As 
noted  above,  most  of t h e   a n a l y t i c a l   s o l u t i o n s  were ava i l ab le   fo r   v i scoe la s t i c  prob- 
lems of  simple  geometry.  For complex geometry, t he   f i n i t e   e l emen t  method has 
proven t o   b e  most useful.  

Applicat ion  of   the  f ini te  element method fo r   so lv ing   v i scoe la s t i c  problems 
i s  not  new; r epor t s  of such work can  be  found,   for   instance,   in   references [17-201. 
However, most  of the  previous work did  not   consider   the  effect   of  moving boundary, 
an   impor tan t   fea ture   for   the   s t ruc tura l   ana lys i s   o f   so l id   p rope l lan t .   Sankaran  
and  Jana  [21]  presented a technique  for  the  solving  of  axisymmetric  viscoelastic 
so l id s   w i th  moving boundary. In   their   approach,   the   f ini te   e lement  mesh corres- 
ponding to   t he  new boundary w a s  re -genera ted ,   whi le   the   s t ress -s t ra in   h i s tor ies  
and mater ia l   p roper t ies  were assumed t o  be  carried  over from  those of the  previous 
time  increment.  This  assumption is val id   only  i f   the   t ime  increment  i s  very small. 
An algorithm  for  automatically  tracking  ablating  boundaries was given by Weeks and 
Cost  [22]. A l l  previous work deal ing  with moving boundary viscoelast ic   problems 
lacks  both  the  appropriate  treatment  of material p rope r t i e s ,  and s t r e s s - s t r a i n  
h i s t o r i e s   f o r   t h e  newly generated mesh. It is  the  purpose  of  this  paper  to  pre- 
sent  such a treatment.  

Three  major  features must be   i nc luded   i n   t he   s t ruc tu ra l   ana lys i s   fo r  a s o l i d  
propellant:  1) proper  modeling of v i scoe las t ic   behavior ,  2)  tracking  of 
ab la t ing  boundary in   o rde r   t o   gene ra t e  new f i n i t e  element  meshes,  and 3 )  t r e a t -  
ment of   the material r e sponses   ( i . e . ,   s t r e s s - s t r a in   h i s to r i e s  and material   pro- 
perties) f o r   t h e  new mesh. All of   these  features  have  been  incorporated  into a 
nonl inear   f ini te   e lement  program ca l l ed  NFAP [231 .  Combustion  and s t r u c t u r a l  
programs were combined i n   o r d e r   t o  make poss ib le   an   in te rac t ion   ana lys i s .  Numeri- 
cal   resul ts   are   presented  to   demonstrate   the  effect  of i n t e r a c t i o n  between 
combustion  and  structural   responses  of  the material. 

COMBUSTION ANALYSIS 

The t h e o r e t i c a l  model w a s  developed  to  simulate  the  combustion phenomenon 
i n s i d e  a propel lant   crack,  which i s  l o c a t e d   i n  a t ransverse   d i rec t ion   to   the  
main flow  of the   rock  chamber.  During the  course  of   der ivat ion,   the   fol lowing 
assumptions are made: 

1) All chemical  reactions  occur  near  the  propellant  crack  surface,  and t h e  
combustion  zone i s  so t h i n   t h a t  i t  is considered a plane. 

2) Rate processes a t  the   p rope l l an t   su r f ace   a r e   quas i - s t eady   i n   t he   s ense   t ha t  
c h a r a c t e r i s t i c  times associated  with  the  gaseous  f lame  and  preheated  pro- 
p e l l a n t  are shor t  i n  comparison t o   t h a t  of pressure   t rans ien t   var ia t ion .  
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3) Gases flowing i n   t h e   p r o p e l l a n t   c r a c k  obey the   Claus ius   o r  Noble-Abel 
equation  of state. 

4 )  Bulk flow i n   t h e   p o r e  is  one-dimensional C241. 

To describe  gas-phase  behavior  inside a sol id   propel lant   crack,  mass, 
momentum, and energy  equations i n  unsteady,  quasi-one-dimensional  forms  have 
been  developed,  based upon the   ba l ance   o f   f l uxes   i n  a con t ro l  volume within  the 
propellant  crack. 

The mass conservation  equation is 

The momentum conservation  equation is 

The energy  conservat ion  equat ion  wri t ten  in  terms of   the   to ta l   s tored   energy  
( i n t e r n a l  and k i n e t i c )  p e r  u n i t  mass, E ;  i s  

The conservation  equations are fur ther   s impl i f ied  by an  order   of  magnitude 
a n a l y s i s   i n  which the  fol lowing terms a re   neg l ig ib l e :  1) forces  between mole- 
cules  due to   viscous normal stress i n   a x i a l   d i r e c t i o n ;  2)  v iscous  diss ipat ion 
and rate of work  done  by the  force  caused by viscous normal stresses in   t he   ene rgy  
equation; and 3) axial   heat   conduct ion between  gas  molecules in   the   energy  
equation. 

The propellant  surface  temperature a t  a f ixed  locat ion  a long  the  crack  before  
the   a t ta inment   o f   ign i t ion  is calculated from the  solid-phase  heat  conduction 
equation  written  in  unsteady  one-dimensional form: 
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where the   l eng th   va r i ab le  y is  measured perpendicular   to   the   loca l   p rope l lan t  
crack  surface.   Ini t ia l   and  boundary  condi t ions are 

T (0, Y) = T 

T ( t ,  m) = T 

P r   P i  

P r  P i  

(5) 

(6) 

The heat  conduction  equation is  solved by using  an  integral  method [25] 
which  employs a third-order  polynomial,  or by direct   numerical   solution  of Eqs. 
(4-7) with  var iable  mesh s i ze   i n   t he   subsu r face .  

For  the  gas  phase,  the Noble-Abel equation is used  for  the  equation  of 
state:  

The gas-phase equations,  i. e. Eqs .  (1) , ( 2 )  and ( 3 ) ,  are non-linear, inhomo- 
geneous, p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  Along w i t h   t h e   p a r t i a l   d i f f e r e n t i a l  
equat ion   for   the   so l id   phase  (Eq. ( 4 ) ) ,  they are solved  simultaneously,  using  the 
f i n i t e   d i f f e r e n c e  method. The der ivat ion  descr ibed above w a s  implemented i n t o  a 
computer  program, crack  combustion  code (CCC) by Kuo e t  a l .  [ 2 6 ] .  

STRUCTURAL ANALYSIS 

To conduct   the   s t ruc tura l   ana lys i s   o f   the   so l id   p rope l lan t ,   th ree  main 
f ea tu res  must be  included in the  numerical   formulations:   1)  modeling of 
v i s c o e l a s t i c  material behavior, 2) simulation  of  ablating  boundary,  and 
3) treatment  of material responses  by  an  interpolation scheme. Each f e a t u r e  
is out l ined below. 

Viscoe las t ic  Material Model 

The material behavior   of   the   sol id   propel lant  is  assumed to   be  visco-  
elastic i n  shear and e las t ic  i n  bulk. Only the  isothermal   condi t ion is  considered. 
The s t r e s s - s t r a in   r e l a t ions   w i th   ze ro   i n i t i a l   cond i t ions .  are w r i t t e n   i n  two pa r t s .  

1) Shear  behavior: 

t 
sij = I Gl(t-t') - d t '  e i j  ( t ' ) d t '  (9) 

0 
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where GI is  the  relaxation  modulus  in  shear.  For  most  viscoelastic 
materiaxs,  it  is  usually  considered 

M 

m= 1 = go + C gm e 
-Bmt 

2,) Bulk behavior: 

D = 3K kk 

As discussed  in  [27],  the  incremental  stress-strain  relations  in  matrix form 
are  written  as 

where T {Au) =  AD^^.  AD^^^ A‘rZ3’ AD,,) 

= Asl1} 
M 

= Bm  ‘mc22’  m  33’ m 23’ m 11 Ct Ct  Ct } 
m=l 

and 

IDVE] = 

Furthermore 

symmetric 

M 

(K+ 7 A )  0 (K- - 2 1 
3 *) 

A 0 
2 
- 

B m = l - e  -BmAt 

(K+ f A) 

and  the  term  mCij  has a recursive  relationship,  i.e., t 
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-$,At) 

ct = e -BmAt C t - A t  + gm(l-e m i j  m i j  $,At e' 
i j  

t t - A t  
i j   i j  i j  

e' = e  - e  

The advantage  of Eq. (19) is t h a t  a l l  of   the s t ra in  history  can  be  obtained by 
re fer r ing   on ly   to   in format ion  i n  the  previous t i m e  s tep,   thus   reducing computer 
s torage and  numerical  calculations. 

From t h e   v i r t u a l  work p r inc ip l e   and   t he   r e l a t ionsh ip   o f  Eq. ( 1 2 ) ,   t h e   f i n i t e  
element  equilibrium  equations  for a t y p i c a l  t i m e  i n t e r v a l   [ t ,  t + A t ]  can  be 
derived as 

where 
m 

and {fo} = [BIT {u0} dv 

Simulation  of  Ablating Boundary  and Mesh Generation 

Burning  of  the  propellant  causes a s ignif icant   change  in   geometry,   thus  
present ing   compl ica t ions   in   f in i te   e lement   s t ruc tura l   ana lys i s .  The e f f ec t   o f  
ab la t ing  boundary is accounted  for by redef in ing   the   f in i te   e lement  mesh a t   s p e c i -  
f i e d  time intervals .   This   involves  two s t ages  of ca l cu la t ions :  1) tracking 
of the   ablat ing  boundary,  and  2) generat ion of new f i n i t e  element mesh. With 
some modifications,  the  procedures  adopted  herein are s imi la r   to   those   p resented  
i n  [22]. 

Consider a s t r u c t u r a l  geometry with  ablat ing boundary. The spa t i a l   pos i -  
t i o n s  of the  ablating  boundary are determined by the   ab la t ion   ve loc i t i e s  which 
a r e  found  from t h e  combustion  analysis a t  d i s c r e t e  times. It is assumed t h a t  
the   ab la t ion   occurs   a lways   in   the   d i rec ton  normal t o   t h e  boundary.  For  struc- 
t u r a l   a n a l y s i s ,   t h e  entire surface is div ided   in to   an   ab la t ing   par t  and a non- 
ab la t ing   pa r t ;   e ach   pa r t  is formed  by d iscre te   l ine   segments   jo in ing   a t   the   nodes  
of t h e   f i n i t e  element mesh. The new pos i t ion  of each   l i ne  segment is located from 
the  given  ablating  velocity.   Consequently,   the new boundary  nodes are determined 
by ca lcu la t ing   the   in te rsec t ions   o f  two subsequent new l i n e  segments.  Likewise, 
the  nodes a t  the   i n t e r sec t ions   o f  new ablating  and  non-ablating  boundaries  are 
then  determined. 

During  the  locat ing  process ,  however, some of  the  boundary  nodes may not l i e  
on t h e  new boundary  and  thus must  be  eliminated.  If   the  distance from t h e   t i p  
of t h e  normal vector  a t  a new nodal   pos i t ion   to  any  node  on t h e   o r i g i n a l  boundary 
is less than   t he   va lue   o f   t he  normal i t s e l f ,   t h e  node is removed. 
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I n   g e n e r a l ,   t h e   t o t a l  number of  nodes  on  the  boundary a t  d i s c r e t e  times 
w i l l  be   different   because some of  the  nodes  have  been removed. However , i n  
t he   ana lys i s  i t  is more convenient  to  generate a f i n i t e  element mesh similar t o  
the   o r ig ina l   one  so that in te rpola t ion  of material   response  can  be made. One 
way to   accomplish  this  is by  keeping  the number of  boundary  nodes  constant. 
Consequently, t h e  boundary  nodes are redis t r ibuted  between two d iscont inui ty  
po in t s  which are s p e c i f i e d   i n   t h e   i n p u t   d a t a  i n  such a way t h a t   t h e   l e n g t h s  
of t h e  new l i n e  segments  have t h e  same r a t i o  as those   o f   t he   o r ig ina l   l i nes .  

Once t h e  new boundary  nodes are defined,  an  automatic mesh generation 
scheme i s  used t o  create the   i n t e r io r   nodes   fo r   fu r the r   ana lys i s .  Because  of 
i t s  f l e x i b i l i t y   i n   o b t a i n i n g  a desirabEe mesh, a Laplacian-isoparametric  grid 
generation scheme [ 281 is u t i l i z e d .  However, t h i s  method is l i m i t e d   t o  a 
geometry bounded by fou r   s ides .  A f i n i t e  element mesh is shown in   F ig .  1. The 
coordinates of t h e   i - t h   i n t e r i o r  node can  be  expressed  in terms of  those  of 
neighboring  nodes  by 

where w is the   weight ing   fac tor   for   ad jus t ing   the   d i s t r ibu t ion   of   in te r ior   nodes ,  
and 0 5 ~ 5 1 .  

Se t t i ng  up the   equat ions   for   each   in te r ior  node y i e l d s  two systems  of  simul- 
taneous  equations. It is observed  that   the   resul t ing  systems  of   equat ions are 
banded and symmetric. The Gaussian  elimination scheme is  employed t o   s o l v e   f o r  
the  coordinates   of   the   inter ior   nodes.  

In te rpola t ion  of Material  Responses 

As seen from Eq. (16) ,   the  stress increment AU f o r   t h e  time i n t e r v a l  
[ t ,  t+At]  varies  with material p r o p e r t i e s   a n d   w i t h   t h e   s t r a i n   h i s t o r y   a t   b o t h  
current and previous time steps.  When the  region  of  an  element  changes  over a 
period  of time due to   ab l a t ion ,   t he   ma te r i a l   r e sponse   h i s to ry  of t h e  new elements 
is l o s t  and must be  determined by an   in te rpola t ion   procedure  from t h e   o l d  ele- 
ments a t  previous time steps.   Accordingly,   the  interpolation  procedure is ca r r i ed  
out  on th; element level. For   calculat ions,   the  material responses   are   separated 
i n t o  two groups:   the   f i rs t   includes  such  var iables   evaluated a t  the  Gaussian 
in tegra t ion   po in ts ,  i . e . ,  ADi. , A E ~ .  and Ci. ; the  second  includes  the  nodal 
displacements  which are e v a l d t e d  a$ noday pa in ts .   In   the   p resent   ca lcu la t ions  , 
two l i m i t a t i o n s  are imposed: 1)  eight-node  quadrilateral   elements  are  used 
throughout   the  analysis ;  and 2)  the  four  sides  of  each  element  remain  straight 
before and a f t e r   a b l a t i o n .  

1)   Interpolat ion  of   Gaussian  var iables  - It i s  noted   tha t   the   quadra t ic  d i s -  
placement  approximation  of  an  eight-node  element  yields a l i n e a r   s t r a i n   v a r i a -  
t i on .  With t h i s  fact  i n  mind, the   quant i t ies   o f   Gauss ian   var iab les   a t   nodal  
po in ts   a re   f i r s t   eva lua ted   for   every   o ld   e lement .  As shown i n  Fig.   2a ,   b ,   th is  
can  be  done by using  the  l inear   isoparametr ic   shape  funct ions,  namely, 
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4 - 
wk' = z hi(rL, Si) * w; k = 1, 2, 

i=l 

where h, = 1/4(1 + r , r ) ( l  + s,s) i = 1, 2, 3 ,  4 
I 

For  each new 
point are known. 
computed by using 

I I 

e lement ,   the   loca l   coord iza tes   ( r  , s) of 
The global  coordinates,  (yk, zk) ,kef t h a t  
the  following  equations: 

3, 4 

the  k-th  Gaussian 
poin t   a re ,   therefore ,  

4 

L - 
'k 

= p hi ( rk ,  sk) * zi 
i= 1 

After  (yk, ) are found, the  old  e lement   to  which the  point  belongs must be 
i d e n t i f i e d .  kA search  process  based upon the   va lues   o f  r ' and s '  is  developed  for 
this  purpose.  The search starts from the  old  element which  corresponds t o  t h e  
neighboring  elements.   Equations  for  such  calculations are  given by 

L 

Fig. 2c shows how to   i den t i fy   t he   e l emen t   t o  which the   po in t s ,  (r', s f ) ,  belong. 
Once the   loca t ion   of   the   po in t  is ver i f ied ,   an   in te rpola t ion   procedure  i s  per-  
formed,  using  the  relationship 

4 

2) I n t e r p o l a t i o n  of nodal  displacements - A similar procedure  to   that   explained 
above is also used  to   determine  the  posi t ion of t h e  node in   ques t ion   wi th   re fe r -  
ence  to  the  old  element.  However, the   in te rpola t ion   procedure   in  Eq. (26) is no 
longer  necessary  since  the  nodal  displacements are known.  The nodal  displacements 
of   the  new mesh are computed from 

8 

i=l 
di = 1 h i ( r ' ,  s ' )  * di' 

where h.  are   the  s tandard  quadrat ic   isoparametr ic   shape  funct ions.  
1 
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All formulat ions  discussed  in   this   sect ion  have  been implemented i n t o  a 
general   purpose  nonlinear  f inite  element program c a l l e d  NFAP for  conducting 
v iscoe las t ic   ana lys i s   o f   so l id   p rope l lan t   wi th   ab la t ing   boundary .  Some numer- 
i c a l  examples are presented   in  a la ter  sect ion.  

COUPLING EFFECT 

For   s t ruc tu ra l   ana lys i s ,   t he  boundary condi t ion   a long   the   c rack  geometry 
i s  defined by pressuredis t r ibu t ionwhich  varies with t i m e ,  and ablat ion  veloci ty;  
both are determined  from  combustion  analysis.  In  the  combustion  analysis,  the 
regress ion   ra te   o f   the   p rope l lan t  i s  dependent  on  the  deformed  crack  geometry. 
Therefore,   the two processes   are   s t rongly  interdependent .  Such a coupl ing   e f fec t  
is obtained by combining the   ana lys i s   o f  two computer  programs: a crack combus- 
t ion  code (CCC) and a s t ruc tura l   ana lys i s   code  (NFAP). Both codes were developed 
independent ly   to   fac i l i t a te  program v e r i f i c a t i o n s .  Linkage  of t h e  two codes w a s  
made subsequently. 

The coupl ing  effect   considered  in   the  present   analysis  i s  l i m i t e d   t o   t h e  
major  parameters, namely pressure  loading,   ablat ion  veloci ty ,   and  crack deforma- 
t ion .   Pressure  and ab la t ion   ve loc i ty   a re   ca lcu la ted  by t h e  CCC a t  each  nodal  point 
located on a one-dimensional  grid  along  the  length  of  the  crack. The ana lys i s  
of crack  combustion  incorporates  the  crack  geometry  variation  caused by both 
mechanical  deformation and mass l o s s  through  gasif icat ion  of   the  propel lant  
surface.  Once the  gas-phase  equat ions  are   solved  and  the  pressures   and  ablat ion 
ve loc i t i e s   a long   t he   c r ack  are ca lcu la ted   for  a given t i m e  t ,  the   da ta  are trans- 
f e r r e d   t o   t h e  NFAP as the  input   information.  NFAP then  simulates  the  updated  crack 
geometry  from t h e   a b l a t i o n   v e l o c i t i e s  and generates a new f i n i t e  element mesh. 
With the  new  mesh and  pressure  data ,  NFAP updates   the   s t i f fness   mat r ix  and i n t e r -  
po la tes  material responses  for  conducting a q u a s i - s t a t i c   a n a l y s i s   a t  time t .  After  
obtaining  the  deformation,  the change i n   t h e   c r a c k   w i d t h   a t   e a c h   f i n i t e   d i f f e r e n t  
node is calculated and  added to   the  exis t ing  crack  width.   Since  the  crack  width is 
the   input   o f   the  combustion ana lys i s ,  one cycle   of   calculat ions is thus  completed. 
The same procedure i s  followed  for  every  specified time increment. 

For  program v e r i f i c a t i o n  and demonstration of i ts  ana lys i s   capab i l i t y ,   t h ree  
sample problems were run   e i ther  by NFAP alone ur i n   t h e  combined NFA.P/CCC program. 
The r e s u l t s  of t he   ana lys i s   a r e   d i scussed   i n   t he   fo l lowing .  The numerical   resul ts  
obtained from CCC alone  are   contained  in   reference [ 26 ] .  

1. A Reinforced  Thick-walled  Cylinder 

Figure 3 shows a cyl inder   of   viscoelast ic   mater ia l  bonded by a s teel  casing 
and subjec ted   to  a s tep-funct ion  internal   pressure.  The example w a s  s e l ec t ed  
because i t  i s  composed of two d i f f e r e n t   m a t e r i a l s  and t h e   a n a l y t i c a l   r e s u l t s  
a r e   r ead i ly   ava i l ab le   fo r  comparison. Only five  eight-node  axisymmetric  elements 
were used  to model the  cyl inder .  The mater ia l   p roper t ies  of t h e  e las t ic  casing 
a r e  

E = 2.068 x 10 MPa 6 v = 0.3015 
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I The material p rope r t i e s   o f   t he   v i scoe la s t i c   co re  are defined  by 

I 

K = 689.5 MPa G1 = 51.71 * exp (-0. l t )  MPa 

In   F ig .   4 ,   t he   va r i a t ions  of c i rcumferent ia l  stresses with  t ime are p l o t t e d  
f o r  compar ison   wi th   the   ana ly t ica l   so lu t ion   ob ta ined   in  [ g ] .  It is  observed  that  
both  solutions  agree  very  closely.   This  problem w a s  analyzed  previously  by 
Zienkiewicz e t  a l .  [ 1 8 ] ,   u s i n g   s t r a i n  rate formulat ion  of   the  f ini te   e lement  
method. However, the   formula t ion   presented   in   the   p resent   paper  i s  more e a s i l y  
incorpora ted   in to   the  NFAP program. 

2. A Star-shaped  Solid  Rocket Motor 

AS an appl ica t ion   of   the   p resent   approach   in   dea l ing   wi th   the  moving boundary, 
a star-shaped  solid  rocket  motor w a s  analyzed by assuming  both a constant  and 
ablating  inner  boundary. The configurat ion  and  f ini te   e lement  mesh are shown 
i n  Fig. 5, and t h e  material propert ies   of   outer   casing  and  inner   propel lant  are 
i d e n t i c a l   t o   t h o s e  of t h e   f i r s t  example.  Taking  advantage of t h e  symmetry 
condition,  only a 3O0-sector w a s  modeled  by f i n i t e  element mesh. The contours 
of maximum compressive stress analyzed by constant  inner  boundary a t   v a r i o u s  
times are shown i n  Fig. 5. Comparing the   p re sen t   r e su l t s   w i th   t hose   o f  [ 181, i t  
is ev iden t   t ha t   t he   gene ra l   pa t t e rn  i s  q u i t e  similar b u t   t h a t  some small d i f fe rences  
do ex is t .   S ince   the  geometry of   the   rocke t   motor   in  [18] w a s  no t   c lear ly   def ined ,  
the  difference  in   dimension  used  in   these two analyses  could  be  the  cause  of  such 
deviat ions.  

The ac tua l  case of a so l id   rocke t  motor  can  be modeled  more closely  by con- 
s ide r ing   t he   i nne r  boundary  being  ablated.  Figure 6 shows the  contours   of  maximum 
compressive stress predicted  by NFAP, using  the  option  of moving boundary. The 
resu l t s   ob ta ined  are q u i t e   d i f f e r e n t  from  those  of [la]. However, observing  the 
differences  between  Figs. 5 and  6, w e  can  conclude  that   the   resul ts   obtained  by 
NFAP are qui te   reasonable .  The so lu t ion  reveals tha t   t he   h igh  stress region 
obtained  for   ablat ing  boundary  propagates   fas ter   than  that   wi th   non-ablat ing 
boundary. 

3. A Propellant  Crack Specimen 

A s  a f i n a l  example, a propellant  crack  sample w a s  analyzed,  using  the 
combined NTAP/CCC program to  demonstrate   the  coupl ing  effect .  The i n i t i a l  geo- 
metry  and f i n i t e  element mesh generated by NFAP is  given i n   F i g .  7 .  The crack 
is 0.15 m l ong   and   t he   i n i t i a l  gap-width i s  0.89 mm. The web thickness  i s  
8 nun a long  the  crack  and 20 mm a t  t h e   t i p .  Because of  symmetry, only  half   of   the  
Sample w a s  modeled  by 80 p lane   s t ra in   e lements .  The shear   re laxa t ion  modulus of 
the   p rope l lan t  w a s  assumed t o   b e  

Gl(t) = 1.461 + 7.43 * exp  (-.095t) MPa; and K = 4,826 MPa. 

Calcu la ted   p ressure   d i s t r ibu t ions  a t  var ious  times, from t h e  CCC alone, are 
given i n  Fig. 7. The burning phenomenon of   the  propel lant   can  be  br ief ly   des-  
cr ibed as follows. The p r e s s u r e   i n   t h e  chamber increases wi th  t i m e ,  causing 
the hot   gases   to   pene t ra te   fur ther   in to   the   c rack .  As time passes ,   the   p ressure  
wave travels along  the  crack  and is reflected  from  the  closed  end. A t  about 
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200 us, t he   p re s su re   f ron t   has   a l r eady   r eached   t he   t i p  and is ref lec ted ,   caus ing  
pressure  a t  t h e   t i p   t o  increase. 

Figure 8 shows the   resu l t s   ob ta ined   f rom  the  combined NFAP/CCC program. 
During t h e   i n i t i a l   p e r i o d ,   t h e   g e n e r a l   t r e n d   o f   t h e   p r e s s u r e   d i s t r i b u t i o n  is simi- 
la r  t o   t h a t  from  convective  burning  analysis  alone.  However, as time progresses ,  
no t iceable   d i f fe rences  between the  two cases begin to appear. Up t o  200 us ,  the  
pressures   obtained  f rom  the combined ana lys i s  are lower,   except  near  the  crack 
entrance  region. A t  t = 300 us, two pressure  peaks  appear.  A t  t = 325 us, th ree  
pressure  peaks  appear.  These pressure  peaks are caused  by t h e   p a r t i a l   c l o s u r e  of 
t h e  gap. The deformation  pattern  of  the  propellant is qui te   i r regular   because  
o f   t he  uneven d i s t r ibu t ion   o f   t he   p re s su re   a long   t he   c r ack   su r f ace .  The elements 
a t  the   c rack   en t rance  are compressed by the   h igh  chamber pressure,  which results 
i n   t h e   p r o p e l l a n t   b e i n g  pushed into  the  crack.   Since chamber pressure  increases  
more quickly  than  pressure  inside  the  crack,   the   propel lant  is  pushed  toward the  
lower  pressure  region  inside  the  crack. The mechanical  deformation  of  the 
propellant  causes  narrowing  of  the  crack  width,   and  consequently  results  in a l o c a l  
c r ack   c losu re .   Th i s loca lgap   c losu re   man i fe s t s   i t s e l f   i n  a pressure  peak. The 
loca l ized   pressure   peaks   o r  gap closures  move along  the  crack.  A t  t = 3 2 5 u s ,  t h i s  
loca l ized   pressure  phenomenon becomes evident  a t  x / L  = 0.167, 0 . 4 3 3 ,  and 0 . 6 3 3 .  

CONCLUSION 

The computer  program fo r   eva lua t ing   t he   coup l ing   e f f ec t  between  convective 
burning  and  structural   deformation w a s  developed  by  combining t h e  Crack  Combustion 
Code and a Nonlinear  Finite-Element  Analysis  Program.  In s t r u c t u r a l   a n a l y s i s ,  
t he   l i nea r   v i scoe la s t i c  material model, toge ther   wi th   the   capabi l i t i es   o f  simu- 
l a t i n g   a b l a t i n g  boundary  and in t e rpo la t ing  material responses ,  was considered. 
Also, the   coupl ing   e f fec t   es t imated  by the  combined ana lys i s  shows some s i g n i f i -  
can t   in te rac t ion  between the  combustion  and  mechanical  deformation.  This pheno- 
menon w i l l  be   ver i f ied   fur ther  by future  experiments. 
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SYMBOLS 

1. Combust  ion  Analysis 

A = cross-sectional  area  of  crack 

B = body  force 

b = co-volume 

c = specific  heat  at  constant  pressure 

E = total  stored  energy 

h = local  convective  heat-transfer  coefficient 

h = local  convective  heat-transfer  coefficient  over  propellant  surface 

hew= local  convective  heat-transfer  coefficient  over  nonpropellant  port  wall 
hf = enthalpy  of  combustion  gas  at  adiabatic  flame  temperature 

ph = burning  perimeter 

Pw = wetted  perimeter  of  port 

p = static  pressure 

R = specific  gas  constant  for  combustion  gases 

1: = burning  rate  of  solid  propellant,  including  erosive  burning  contribution 

T = temperature  (without  subscript,  static  gas  temperature) 

Tf = adiabatic  flame  temperature  of  solid  propellant 

T = initial  propellant  temperature 

T = propellant  surface  temperature 

P 

X 

P 

- 
C - 
CP - 

b 

Pi 

PS 

Tws = nonpropellant  wall  surface  temperature 

t = time 

u = gas  velocity 

Vgf=  velocity  of  propellant  gas  at  burning  surface 

x = axial  distance  from  propellant  crack  opening 

y = perpendicular  distance  from  propellant  surface  into  solid 

a = thermal  diffusivity 
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y = ratio of specific  heats 

X = thermal  conductivity 

IJ = gas  viscosity 

P = density  (without  subscript,  gas  density) 

T = shear  stress on port  wall 

T = normal viscous  stress 

0 = angle  measure,  in  a  counterclockwise  direction,  at  lower  side of 

W 

xx 

W propellant,  degree 

Subscripts 

i = initial  value 

pr = solid  propellant  (condensed  phase) 

c = rocket  chamber 

2 .  Structural  Analysis 

'ij = stress  deviators 

e ij = strain  deviators 

' ij = stress  tensor 

G1 = shear  relaxation  modulus 

K = bulk  modulus 
L 

( )L = a  quantity  at  time t 

{Aa) = incremental  stress 

IAE) = incremental  strain 

{ao} = equivalent  initial  stress  vector  due  to  viscoelastic  behavior 

[KJ = stiffness  matrix 

c lT = transpose of matrix 

M = number of terms of series  in  relaxation  modulus 
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go = ) 
gm = I  material  constants  in  relaxation  modulus 
{Av} = increment  of  nodal  displacement  vector 

[Dv,l = viscoelastic  material  matrix 

[B] = strain-nodal  displacement  transformation  matrix 

w' = values  of  Gaussian  variables  at  k-th  integration  point  referred 
- 

to  old  element 

W' i = values  of  Gaussian  variables  at  i-th  nodal  point  referred  to 
old  element 

(rk',sk') = local  coordinates  of  k-th  integration  point  referred  to  old 
element 

(yi,z ) = global  coordinates  of  i-th  nodal  point  referred  to  new  element i 
Di = i-th  nodal  displacement  referred  to  new  element 

Dit = i-th  nodal  displacement  referred  to  old  element 

(r',s') = local  coordinates  of  point  in  equation  referred  to  old  element 

81 

I- 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

REFERENCES 

Taylor, J.W.: The Burning  of  Secondary  Explosive Powders  by a Convective 
Mechanism. Trans.  Farad. SOC. 58,  1962,  p.  561. 

Belyaev, A.F.; Korotkov, A . I . ;  Sulimov, A.A.; Sukoyan, M.K.; and Obemin, 
A.V.: Development of Combustion i n  an   I so la t ion   Pore .  Combustion, Explosion 
and Shock Waves, Vol. 5, Jan.-March 1969,  pp. 4-9. 

Belyaev, A.F.; Bobolev, V.K.; Korotkov, A.A.; Sulimov, A.A.; and  Chuiko, 
S.V.: Development  of Burning i n  a Single   Pore,   Transi t ion  of  Combustion of 
Condensed Systems to  Detonation, Chap. 5, Pt.A.,.  Science  Publisher,  1973, 
pp. 115-134. 

Cherepanov, G.P.: Combustion i n  Narrow Cavities. J. of Appl. Mech., Vol. 11, 
1970, pp. 276-281. 

Godai, T.: Flame Propagation  into  the  Crack of a Solid-Propellant G r a i n .  
AIAA Journal,  Vol. 8, July  1970, pp.  1322-1327. 

Krasnov, Yu. K.: Margulis, V.M.; Margolin, A.D.;  and  Pokhil,  P.F.:  Rate 
of  Penetration  of Combustion into  the  Pores  of  an  Explosive  Charge.  Combus- 
tion,  Explosion,  and Shock Waves, Vol.  6,  July-Sept.  1970,  pp. 262-265. 

Jacobs, H.R.; Williams, M.L.; and  Tuft, D.B.: An Experimental  Study  of  the 
Pressure  Distr ibut ion  in   Burning Flaws in   Sol id   Propel lan t   Gra ins .  Univ. of 
Utah, S a l t  Lake City,   Utah,  Final  Report   to A i r  Force  Rocket  Propulsion 
Laboratory, AFRPL-TR-72-108, UTEC DO 72-130, Oct.  1972. 

Jacobs. H.R.; Hufferd, W.L.; and Williams, M.L.: Further  Studies o f  t he  
Critical Nature  of  Cracks  in  Solid  Propellant  Grains, AFRPL-TR-75-14, 
March 1975. 

Lee, E.H. ;  Radok, J .R.M. ;  and Woodward, W.B.: Stress Analysis  for  Linear 
Viscoelastic  Material .   Trans.  SOC. Rheol., Vol. 3,  1959, pp. 41-59. 

Arenz, R . J . ;  and Williams, M.L.: The Stresses in   an   E las t ica l ly   Reinforced  
Pressurized  Viscoelastic  Sphere  with  an  Eroding Boundary. Proceedings 
20th  Meeting  Joint Army-Navy-Air Force  Physical  Properties  Panel,   Johns 
Hopkins  Univ.,  Baltimore, Md., 1961,  p.  143. 

Corneliussen, A.H.; and Lee, E.H.: Stress Distr ibut ion  Analysis   for   Linear  
Viscoelast ic .Mater ia ls .   Internat ional  Union of  Theoretical  and  Applied 
Mechanics Symposium on  Creep,  1960,  pp. 1-20. 

Corneliussen, A.H.; Kamowitz, E.F.; Lee, E.H.;  and Radok, J .R.M. :  Visco- 
elastic Stress Analysis of a Spinning Hollow Circular  Cylinder  with  an 
Ablating  Pressurized  Cavity.  Trans SOC. Rheol., Vol. 7 ,  1963,  pp. 357-390. 

Shinozuka, M.:  Stresses i n  a Linear  Incompressible  Viscoelastic  Cylinder  with 
Moving Inner Boundary. J. Appl. Mech., Vol.  13,  1963,  pp. 335-341. 

14.  Rogers, T.G.; and Lee, E.H.: The Cylinder  Problem i n   V i s c o e l a s t i c  Stress 
Analysis.  Quart. Appl.  Math.,  Vol.  22,  1964,  pp. 117-131. 

82 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

Schapery, R.A.: An Approximate Method of Stress Analysis   for  a Large Class 
of  Problems in   Viscoe las t ic i ty .   Purdue  Univ. Rept. A. and ES62-18, 1963. 

Christensen, R.M.; and  Schreiner, R.N.: Response to   P re s su r i za t ion  of a 
Viscoelastic  Cylinder  with  an  Eroding  Internal Boundary, AIAA Journal,  
Val. 3, 1965,  pp. 1451-1455. 

Chang,: T.Y.: Approximate Solu t ions   in   L inear   Viscoe las t ic i ty .  Ph.D. 
Disser ta t ion,  Dept. of Civi l  Eng.,  Univ. of California,  Berkeley,  1966. 

Zienkiewicz, O.C.; Watson, M.; and  King,  I.P.: A Numerical Method of 
Viscoelast ic  Stress Analysis .   Int .  J. Mech. Sc i . ,  Vol. 10,  1968,  pp. 807-827. 

White, J .L .  : F i n i t e  Element in   Linear   Viscoelast ic i ty .   Proceedings  of  
2nd Conference  on Matrix Method i n   S t r u c t u r a l  Mechanics, Ai r force   F l igh t  
Dynamics Lab,  Wright Pa t te rson  AFB, Ohio, AFFDL-TR-68-150, 1968,  pp. 489-516. 

Gupta, K.K.; and Heer, E.: Viscoe las t ic   S t ruc tures .   S t ruc tura l  Mechanics 
Computer Programs,  Univ. Press  o f  V i rg in i a ,   Cha r lo t t e sv i l l e ,  1974, pp. 207-225 - 
Sankaran, G.V.; and  Jana, M.K.: Thermviscoelastic  Analysis of Axisyrmnetric 

Sol idPropel lant   Grains .  J.  Spacecraft ,  Vol. 13, 1976,  pp. 641-642. 

Weeks, G.E. ;  and Cost,  T.L. :  An Algorithm  for  Automatically  Tracking  Ablat- 
i ng  Boundary. I n t .  J.  Num.  Method. Engr., Vol. 14,  1979, pp. 441-449. 

Chang, T.Y.; and  Prachuktam, S.: NFAP - A Nonlinear  Finite-Element  Analysis 
Program. Dept. of Civil   Engr. ,  Univ. o f  Akron, Rept. No. SE76-3, 1976. 

Kuo, K.K.;  Chen, A.T.;  and Davis, T.R.: Transient Flame Spreading  and 
Combustion Process   Inside a Solid  Propellant  Crack. AIAA Paper 77-14, AIAA 
15th Aerospace  Science  Meeting,  Jan.  1977. 

Goodman, T.R.:  Appl icat ion  of   Integral  Methods to  Transient  Nonlinear 
Heat  Transfer. Advances i n  Heat Transfer,  Vol. 1, Academic Press ,  New York, 
1964,  pp. 51-122. 

Kuo, K.K.; Chen, A.T.; and  Davis, T.R.:  Convective  Burning in   Sol id-Propel lant  
Cracks. AIAA Journal,  Vol. 1 6 ,  June  1978,  pp. 600-607. 

Chang, J . P . :  F i n i t e  Element Analysis of Linear  Viscoelastic  Solids.  M.S. 
Thesis,  Dept.  of Civil Engr., Univ. of Akron, 1980. 

Herrmann, L.R.: Laplacian-Isoparametric  Grid  Generation Scheme. J. of 
'Engr. Mech. Div.,  Proc.  of  the ASCE, Vol. 102, Oct. 1976,  pp. 749-756. 

83 

I 



5 

Figure 1.- Neighborhood of node i. 

IrlS 1 

I 

3 

(a  1 
0 Gaussian  ,points 

o Node points 

i 
/- "Old" element 

"New" e 1 emen t 

Figure 2.- I n t e rpo la t ion  scheme. 

84 



Y 

t 
Y 

Top a n i   S i d e  View 
Po = 0.69 MPa 

t- 
Figure 3.- Finite  element  mesh of a reinforced  thick-walled  cylinder. 

85 



- Closed form solution 
0 NFAP solution 

1 .  

.8 

.6 

.4 

.2 

.o 

- .2  
0.5 0.6 0.7 0.8 - x/bo 

0.9 

t = 30 

t = 10 

t 5 s  
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Figure 5.- Finite element mesh and  contours of maximum 
principal  stress of a star-shaped  rocket motor 
with  fixed  boundary. 
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Figure 6.- Contours of maximum  principal  compressive  stress of 
a  star-shaped  rocket  motor with  moving  boundary. 
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Figure 7.- Finite  element  mesh of a  propellant  crack  and 
calculated  pressure  distributions  for  various 
times  from  the  crack  combustion  code. 
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Figure 8.- Calculated  pressure  distributions f o r  various 
times  from  the  combined  crack  combustion  and 
non-linear  finite-element  analysis  program. 
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ITERATIVE METHODS BASED UPON RESIDUAL  AVERAGING 

J. W. Neuberger 

This   paper   concerns  i terative methods for   so lv ing   boundary   va lue   p rob-  
l e m s  f o r   s y s t e m s   o f   n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  The methods 
i n v o l v e   s u b t r a c t i n g  an average   o f   res idua ls   f rom  one   approximat ion   in   o rder  
t o  arrive a t  a subsequent  approximation. 

The paper  is d i v i d e d   i n t o   f i v e   p a r t s .  The f i r s t   p a r t   g i v e s  two ab- 
s t ract  methods i n   H i l b e r t   s p a c e .  The second   pa r t  shows how t o   a p p l y   t h e s e  
methods to   quas i l inear   sys tems  to   g ive   numer ica l   schemes   for   such   problems.  
The t h i r d   s e c t i o n   c o n t a i n s  some s p e c i f i c   a p p l i c a t i o n s .  The f o u r t h   p a r t  con- 
t a i n s  a d i scuss ion   o f  some p o t e n t i a l   t h e o r e t i c  matters r e l a t e d   t o   t h e   i t e r a t i o n  
schemes. The f i n a l   p a r t   i n d i c a t e s  work in   p rogress   concern ing   ex tens ions   and  
improvements  of  the  above. 

1. Two a b s t r a c t   i t e r a t i v e   s c h e m e s .   S u p p o s e  H is  a H i l b e r t  space, H' a 
c losed  subspace of H and P i s  an o r t h o g o n a l   p r o j e c t i o n  on H whose range is  a 
subse t   o f  H'. Suppose   a l so   t ha t  L i s  a s t rongly   cont inuous   func t ion   f rom H t o  
L(H,H) so  t h a t  L(U) i s  an   o r thogona l   p ro j ec t ion   fo r   each  U i n  H. It w i l l  be 
seen  how a va r i e ty   o f   boundary   va lue   p rob lems   fo r   non l inea r   sys t ems  may be  re- 
duced to   t he   p rob lem  o f   f i nd ing  U E H '  EO t h a t  

(1) L(U)U = o ,  P(U-W) = u-w 
where W i s  a given  e lement   of  H'. It will b e   s e e n   t h a t   t h e   f i r s t  p a r t  of  (1) 
r e p r e s e n t s  a quasi l inear   system  and  the  second p a r t  of (1) i s  a way of  as- 
s e r t i n g   t h a t  U s a t i s f i e s   b o u n d a r y   c o n d i t i o n s   d e s c r i b e d  by the   g iven   e lement  W. 

For 6>0 an i t e ra t ive  scheme f o r   a t t e m p t i n g   t o   f i n d  U s a t i s f y i n g   ( 1 )  i s  

(2) wo = w ,  'n+ 1 - W n  - 6PL(Wn)Wnyn = 0 , 1 , 2 ,  ... . - 

I f  {W jrn converges   to  UEH' ,  then  n n=O 

( 3 )  P(U-W) = U-W and PL(U)U = 0. 

A s o l u t i o n  U t o  ( 3 )  is  c a l l e d  a quas i so lu t ion   t o   t he   p rob lem (1). S e e   r e f .  1 
f o r  a d i scuss ion   conce rn ing   quas i so lu t ions  vs. a c t u a l   s o l u t i o n s .  

A second  scheme  uses a c o n t i n u o u s   i t e r a t i o n   p a r a m e t e r   b u t  i s  o therwise  
similar t o  ( 2 ) :  Define Z :(O,m)+ H so t h a t  

( 4 )  Z(0) =w,z'  (t) = - P L ( Z  ( t ) ) Z   ( t )  , t r o .  
I f  U = l i m  Z ( t )   e x i s t s ,   t h e n  U s a t i s f i e s  ( 3 ) .  

t+-  
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For  numerical   schemes  one is i n t e r e s t e d   i n   f i n i t e   d i m e n s i o n a l   c h o i c e s  
f o r  (2) u n d e r   f a i r l y   u n r e s t r i c t i v e   h y p o t h e s i s  on P and L. I n   r e f .  2 i t  i s  
shown t h a t  (2) a lways 'converges   in   the   l inear   (L(x)   independent   o f  x€H) f o r  
6 = 1. S i m i l a r   r e s u l t s  may b e   o b t a i n e d   f o r  ( 4 )  by n o t i n g   t h a t  ( 4 )  is a l i m -  
i t i n g  case of  (2) as 6 + O .  

2 .  Quas i l i nea r   sys t ems ;   u se  of f i n i t e   d i f f e r e n c e s .  It is  f i r s t   i n d i -  
ca t ed  how a f a i r l y   g e n e r a l   s e c o n d   o r d e r   q u a s i l i n e a r   s y s t e m  may b e   p l a c e d   i n  a 
s e t t i n g   t o   w h i c h   t h e  i terative schemes (2 ) ,  ( 4 )  apply .   Extens ive   genera l i -  
z a t i o n s  w i l l  b e   e v i d e n t .  

Suppose R i s  a bounded  open  subset  of R2 and  each  of R,S,T is  a cont in-  
uous   rea l -va lued   func t ion   on  R3.  Funct ions   z ,u ,v  on R are sought  s o  t h a t  

+ S ( Z , U , V )  ( ~ 2  +VI)  + T ( z , u , v ) v ~  = O  

(5 1 z 1  - u = o  

where  u1 = 6u/6x, u2 = 6u/6y e tc .  

I f   a p p r o p r i a t e   d e r i v a t i v e s   e x i s t   a n d  (5) h o l d s ,   t h e n  

P ick  two piecewise  smooth  one-dimensional  curves r and r '  i n  3 and a 
func t ion  WE C ( E ) .  Consider   boundary  condi t ions  for  (5) : 

where (i:;;) d e n o t e s   t h e   d i r e c t i o n   n o r m a l   t o  r '  a t  p. 

Define  A:R3+L(R9,R3)  modeled  on (5)  s o  t h a t  

N o t e   t h a t   i f  Z , U , V €  C ( I )  (E)  and 
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Denote L2(S2)9 by H ,  denote   by H' t h e  set of  a l l  (z ,z~ ,u ,u ' ,v ,v ' )€H 
where z 0  = ( z l   , z 2 )  etc.  and a l l  i n d i c a t e d   d e r i v a t i v e s  are L2 g e n e r a l i z e d   d e r i -  
vatives (cf  ref. 3 ) .  Denote  by H i  t h e  set of  a l l  (z ,z '  ,u,u ' ,v,v ')€H so that  

and  denote by P t h e   o r t h o g o n a l   p r o j e c t i o n   o f  H o n t o  HC. 

To complete a d e s c r i p t i o n  of  how (5) ,  (7). are c a r r i e d   o v e r   t o  (1) a de- 
s c r i p t i o n   o f  L i s  requi red .   Denote   L2(m3 by K and   de f ine  C:H +L(H,K) so  t h a t .  
i f  U,Z€H, t h e n   f o r  almost a l l  ~ € 0 ,  

(C(u)z) (PI = (A(q>A(q)*>-'A(q) '21 (PI 

where q : ( r y s y t )  and r , s , t  are t h e  f irst ,  fou r th   and   s even th  elements respec- 
t i ve ly   o f   U(p ) .  F i n a l l y   f o r  u€H, L(U) : C(U)*C(U). 

For w as above ,   def ine  W =  (w,wl,w2). S t a r t  i t e r a t i o n  ( 2 )  wi th  W. Then 
f o r   n = 0 , 1 , 2 ,  ... , Wn h a s   t h e   p r o p e r t y   t h a t   t h e   t r i p l e   c o n s i s t i n g   o f t h e   f i r s t ,  
four th   and   seventh   e lements   o f  W s a t i s f y  ( 7 ) .  S i m i l a r  s t a t emen t s   ho ld  €or  t h e  
i t e r a t i o n  ( 4 ) .  n 

It is  now i n d i c a t e d  how a f i n i t e   d i f f e r e n c e  scheme f o r  ( 5 ) , ( 7 )  may be 
cons t ruc ted  by d e f i n i n g  f i n i t e  dimensional  spaces E and & which  approximate H 
and K above.  Suppose GO is a r e c t a n g u l a r   g r i d   w i t h   e v e n   s p a c i n g  6 s o  t h a t  
G E G O  n-fi h a s   t h e   p r o p e r t y   t h a t   i f  pE G ,  then  a t  least  one  of p + 6e is i n  
G , i = 1 , 2 ,   w h e r e   e l , e 2  is t h e   s t a n d a r d   b a s i s   f o r  R2. Def ine   t o   be  a v e c t o r  
space  of all r e a l - v a l u e d   f u n c t i o n s   o n   t h e   g r i d  G. F o r   u E K , d e f i n e  

i 

I 
- 

(u(p + 6ei)-u(p-6ei))/(26) i f  p + 6ei,p-6eiE G 

(Diu) (PI = (u (p  + 6 e i ) - u ( p ) ) / 6   i f  p-6e i 6 G 

(u(p)-u(p-6ei))/6 i f  p +  6ei 4 G ,  i = 1 , 2 ,  P E G .  

Define " H = K 9 .  F o r   ( z , u , v > € & ~ ,   d e f i n e  
D(z,u,v) = (~,D~z,D~z,u,D~u,D~u,v,D~v,D~v). Denote  by E' t he   r ange   o f  D. 
Define T,L' subse t s   o f  G approximating r and I" respec t ive ly .   Denote   by  H o '  
t h e  set of a l l  D(z ,u ,v)EH'   such   tha t  

%+I -n = W - PL(yn)yn,n= 0 ,1 ,2 ,  . . . 
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where L is d e f i n e d   e s s e n t i a l l y  as above.  Condition (8) on P i m p l i e s   t h a t  
boundary  condi t ions are p r e s e r v e d   u n d e r   t h e   i t e r a t i o n  (9) aGd hence are sat- 
s i f i e d   b y  a limit of  [Wn] i=o .  

S i m i l a r   s t a t e m e n t s   h o l d   f o r  a f i n i t e   d i m e n s i o n a l   c o u n t e r p a r t   t o   t h e  
i t e r a t i o n  ( 4 )  . 

Process  ( 4 )  i n   t h i s   f i n i t e   d i m e n s i o n a l   s e t t i n g  becomes a v a r i a n t   o f   t h e  
"method o f   l i nes" .  It  spec i f ies   one   equat ion   and   one  'unknown' f o r   e a c h   p o i n t  
i n   t h e   g r i d  G. The ' t i m e '  parameter  i s  i t e r a t i o n  number, n o t  a d i s t i n g u i s h e d  
v a r i a b l e   i n   t h e   s y s t e m   o f   d i f f e r e n t i a l   e q u a t i o n s .  Use of  ( 4 )  t hen  may extend 
the   u se   o f   t he   'me thod   o f   l i nes '   t o  a l a r g e r   c l a s s   o f   p r o b l e m s .  

3 .  Appl i ca t ions .  

Take 52 t o   b e  a bounded r e g i o n   i n  R2. Define R , S , T  i n  (5) s o  t h a t  

R(z,u,v) = 1 +v2 

S(Z,U,V) = -  uv 

T(z  ,u,v) = 1 + u2. 

System (5) then is 

( l + V 2 ) U l   - u v ( u 2 + v 1 )   + ( l + u 2 ) v 2 = 0  

z1 - u = o  

2 2 - v = O  

As a s i n g l e   s e c o n d   o r d e r   e q u a t i o n   t h i s  is 

( l + z $ ) z 1 1 -   2 z 1 z 2 z 1 2 +  (1+ z f )  222  = o ,  

t he   min ima l   su r f ace   equa t ion   fo r   r ea l -va lued   func t ions  on a r e g i o n   i n  R2. 
Condi t ions are s p e c i f i e d  by 

f o r  some g i v e n   f u n c t i o n   f .  The FORTRAN code l i s t e d   i n   r e f .  4 may b e   e a s i l y  
m o d i f i e d   t o   d e a l   w i t h   t h i s   e q u a t i o n .  

I f   y y a o o y u o o  are g i v e n   p o s i t i v e  numbers  and  R,S,T are chosen s o  t h a t  

R(Z,U?V) =a:+ ((y-1)/2)  (u2-u2-v2)  -u2 

s ( 2  ,u ,v)  = -uv 

~ ( z  ,u ,v)  = a: + ((y-1) / 2  (u2-u2-v2) - v2 

then (5) r educes   t o   t he   t r anson ic   f l ow  equa t ion   u sed   i n   r e f e rence  4 (and 
taken  f rom  reference 5 ) .  For   numerical   computat ions,   boundary  condi t ions a t  
i n f i n i t y  are r ep laced  by appropriate   boundary  condi t ions  on  the  boundary  of  a 
l a r g e  box. One a l s o   h a s   z e r o   n o r m a l   d e r i v a t i v e   c o n d i t i o n s  on a n   a i r f o i l   i n s i d e  
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the   box .   See   re fe rences  4 ,  5 f o r   d e t a i l s .  The 
is s p e c i f i c a l l y   f o r   t h i s   p r o b l e m .   P r i n t o u t s  of 
bers  (ug/am.) are g iven   t he re .  

FORTRAN l i s t i n g   i n   r e f e r e n c e  4 
r e s u l t s   f o r   v a r i o u s  mach num- 

, 4 .  F i n i t e   d i m e n s i o n a l   p o t e n t i a l   t h e o r y .  
connected  with (9) is t h e   c a l c u l a t i o n  of P x  f o r  

The ma in   computa t iona l   e f fo r t  
various  xEH.  Denote by 20 

a l l  ( z y u , v ) ~ K 3   s a t i s f y i n g  (8) and  denote  by IT t he   o r thogona l   p ro j ec t ion   o f  g3 
onto  J ~ .  From r e f .  2 i t  f o l l o w s   t h a t  P = DE-~ITD* where E ITD*D [ Hence 

t h e  main  work i n   c a l c u l a t i n g   t h e   a c t i o n   o f  is  t h e   s o l v i n g   f o r  x (given  y)  
in  l i n e a r   s y s t e m s  

LO 

(10) Ex = y. 

Now Jo is  a D i r i c h l e t   s p a c e   i n   t h e   s e n s e   o f   r e f .  6 and E is the   co r re spond ing  
L a p l y c i a n   f o r  20. So, E-l b e i n g   t h e   i n v e r s e  of a L a p l a c i a n ,   t h e   e f f e c t   o f  
mu l t ip ly ing  a v e c t o r  y by E-1 is t o   t a k e  a ce r t a in   nonnega t ive   we igh ted  aver- 
age  of  the  components  of  y.  References 2 and 4 con ta in   desc r ip t ions   o fme thods  
f o r   s o l v i n g   ( 1 0 )  . 

5. Extensions  and  Improvements. 

A promising  replacement   for  ( 4 )  i s  given by 

(11) z ( 0 )  = w z ' ( t )   = - ( V + ) ( z ( t ) ) ,   t 2 0  

where  a(x> E % 11 A(x)x1[2 ,x€H , A be ing   de f ined  as i n   s e c t i o n  3 .  One h a s   t h e  
f o l l o w i n g   e x p l i c i t   e x p r e s s i o n   f o r   t h e   g r a d i e n t   o f  4:  

Then (11) becomes a steepest  descen t   p rocess .   In  a number of  examples,   the 
only c r i t i c a l   p o i n t s  o f  C$I seem t o   b e   s o l u t i o n s   t o  ( 3 ) .  Fur thermore ,   so lu t ions  
z t o  ( 3 )  remain  bounded  and so  converge   to  a s o l u t i o n  u t o  ( 3 ) .  

Work i s  in   p rog res s   conce rn ing   t he   adap ta t ion   o f  (2)  , ( 4 )  and  (11)   to  
f i n i t e   e l e m e n t   s p a c e s   r a t h e r   t h a n   f i n i t e   d i f f e r e n c e   s c h e m e s .  It  is  expected 
that   methods w i l l  be   deve loped   which   use   f in i te   e lement   spaces   bu t   have  l i t t l e  
else i n  common wi th   conven t iona l   f i n i t e   e l emen t   me thods .  See  r e f e r e n c e  7 f o r  
some p r e l i m i n a r y   r e s u l t s .  

95 



REFERENCES 

1. J. W. Neuberger:  An Iterative Method fo r   Approx ima t ing   So lu t ions   t o  Non- 
l i n e a r   P a r t i a l   D i f f e r e n t i a l   E q u a t i o n s ,   A p p l i e d   N o n l i n e a r   A n a l y s i s ,  
Academic Press ,   1979.  

2. J. W. Neuberger :   F in i te   Dimens iona l   Poten t ia l   Theory   Appl ied   to  Numerical 
Analys is  of Linear   Sys tems,   L inear   Algebra   and   Appl ica t ions ,   35(1981) .  
(To be   publ i shed . )  

3. P. G. Ciarlet: The F i n i t e  Element Method f o r   E l l i p t i c   P r o b l e m s ,   N o r t h  
Holland  (1978).  

4. J. W. Neuberger: A Type-independent Method f o r   S y s t e m s   o f   N o n l i n e a r p a r t i a l  
D i f f e ren t i a l   Equa t ions :   App l i ca t ion   t o   t he   P rob lem  o f   T ranson ic  Flow, 
Computers  Math.  Appl.  6(1980) , 67-78. 

5. G. F. Ca rey :   Var i a t iona l   P r inc ip l e s   fo r   t he   T ranson ic   A i r fo i l   P rob lem,  
Compt. Math.  Appl. Mech. Engng. 13(1978),  129-140. 

6. A. Beur l ing  e l  J. Deny: Espaces   de   D i r i ch le t ,  I. L e  Cas Elementaire ,   Acta  
Math.  99 (1958).  

7. J. W. Neuberger: A Type-independent Iterative Method Using   F in i te   E lements ,  
P roceed ings   o f   Th i rd   In t e rna t iona l   Confe rence   on   F in i t e   E lemen t s   i n  Flow 
Problems, D. H. Nome, ed.,  Univ. of Calgary,   Calgary,   Alberta,   Canada, 
19  80. 

Department of Mathematics 
North  Texas State  Un ive r s i ty  
Denton,  Texas  76203 

96 
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SUMMARY 

The STEALTH code   sys tem,   which   so lves   l a rge   s t ra in ,   nonl inear   cont inuum 
mechan ics   p rob lems ,   has   been   r i go rous ly   s t ruc tu red   i n   bo th   ove ra l l   des ign  
and  programming s t a n d a r d s .  The d e s i g n  is based   on   t he   " theo re t i ca l   e l emen t s  
of a n a l y s i s "   w h i l e   t h e   p r o g r a m m i n g   s t a n d a r d s   a t t e m p t   t o   e s t a b l i s h  a p a r a l -  
lelism between  phys ica l   theory ,   p rograming  s t ruc ture   and   documenta t ion .  
These   fea tures   have  made it e a s y   t o   m a i n t a i n ,   m o d i f y   a n d   t r a n s p o r t   t h e  
codes. It h a s   a l s o   g u a r a n t e e d   u s e r s  a high level of q u a l i t y   c o n t r o l  and 
q u a l i t y   a s s u r a n c e .  

INTRODUCTION 

A computer   code  system  cal led "STEALTH" ( r e f .  l)*, has  been  developed 
f o r   t h e  Electric Power R e s e a r c h   I n s t i t u t e  (EPRI) fo r   t he   p r imary   pu rpose  of 
s o l v i n g   n o n l i n e a r ,  s t a t i c ,  q u a s i - s t a t i c  and t rans ien t   p roblems  involv ing  
b o t h   f l u i d s  and s o l i d s .  The  numerical   technology  for   this   computer   program 
i s  based  on  the  devel .opments   of   Wilkins   ( ref .  2 )  and  Herrmann ( r e f .   3 ) .  
Although t h i s   t e c h n o l o g y  w a s  o r i g i n a l l y   d e v e l o p e d   f o r   l a r g e   d e f o r m a t i o n ,  
f a s t - t r a n s i e n t   d e f e n s e - o r i e n t e d   a p p l i c a t i o n s   ( f i g u r e  l ) ,  it- has  been  adapted 
t o   b e   q u i t e   u s e f u l   f o r   s t u d y i n g   t h e r m a l - h y d r a u l i c   m e c h a n i c a l   t r a n s i e n t s  
( f i g u r e   2 ) ,   n u c l e a r  waste i s o l a t i o n   g e o l o g i c   b u r i a l   s t a b i l i t y   ( f i g u r e  3 )  and 
a va r i e ty   o f   s t ruc tu re -med ium  in t e rac t ion  (SMI) problems  ( f igures  4 and 5). 
The design  and  development  of  general-purpose 

""Solids and   Thermal   hydraul ics   codes   for  EPRI Adapated  from  Lagrange 
- TEODY and &DIP", deve loped   fo r  Electr ic  Power R e s e a r c h   I n s t i t u t e   b y  
Sc ience   App l i ca t ions ,   Inc .  , under   con t r ac t  RP307. 
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STEALTH i n v o l v e d   e x t e n s i v e   p l a n n i n g   i n   o r d e r   t o  make it adapt ive  enough t o  
h a n d l e   t h i s   w i d e   v a r i e t y   o f   n o n l i n e a r   p r o b l e m s .   T h i s   p a p e r   d e s c r i b e s   t h e  
s t r a t e g y   t h a t  w a s  (and s t i l l  i s )   u s e d .  

ARCHITECTURAL OVERVIEW 

The o v e r a l l   s t r u c t u r e   o f   t h e  STEALTH nonl inear   code   sys tem  has   been  
b u i l t   a r o u n d  a p a r t i c u l a r  view of the   phys i ca l   equa t ions   be ing   so lved .   Th i s  
view is b a s e d   o n   t h e   " t h e o r e t i c a l   e l e m e n t s   o f   a n a l y s i s   o f  a physical   system' '  
which are summarized i n   T a b l e  1. The t h e o r e t i c a l   e l e m e n t s   o f   a n a l y s i s  are a 
convenient   conceptu l iza t ion   for   so l id   and   f lu id   mechanics   p roblems.  It 
s e p a r a t e s   p h y s i c s  l a w s ,  material r e s p o n s e   c h a r a c t e r i s t i c s ,   g e o m e t r i c   a s p e c t s  
(e.g. , b o u n d a r y   c o n d i t i o n s )   a n d   i n i t i a l   c o n d i t i o n s .   T h e s e   d i s t i n c t  ca- 
t e g o r i e s  are no t   on ly   conven ien t   t heo re t i ca l   g roup ings ,   bu t  are a l s o   u s e f u l  
programming  and  documentation e n t i t i e s .  

The STEALTH a r c h i t e c t u r e   b a s e d  on t h i s  view h a s   s t o o d   t h e  test of t i m e  
f o r   o v e r   f i v e   y e a r s   a n d   c o n t i n u e s   t o   b e   q u i t e   f l e x i b l e   a n d   a d a p t a b l e   t o  new 
problems  and  more  complex  si tuations.  Among t h e  many a d a p t i v e   f e a t u r e s  are 
( 1 )   t h e   a b i l i t y   t o   c o u p l e   o t h e r   c o m p u t e r   p r o g r a m s ,  ( 2 )  a s tandard  procedure 
f o r   e x t e r n a l l y   d e v e l o p e d   c o n s t i t u t i v e   m o d e l s ,  (3)  a modular  topdown  archi- 
t e c t u r e   w i t h  a FORTRAN s y n t a x   t h a t  makes developing  and  changing  subrout ines  
easy,  and ( 4 )  a genera l -purpose ,   spec ia l -purpose   vers ion   a r rangement   tha t  
guarantees  good q u a l i t y   a s s u r a n c e .   F i n a l l y ,  it h a s   b e e n   p o s s i b l e   t o  add 
new c a p a b i l i t i e s   t h a t  were n o t   s p e c i f i c a l l y   a n t i c i p a t e d  when STEALTH w a s  
o r i g i n a l l y   d e s i g n e d .  

STEALTHs l D ,  2D, and 3D are based  on a m o d u l a r   a r c h i t e c t u r e   i n   w h i c h  
many subrout ines   and  COMMON b l o c k s   i n   e a c h   c o d e  are i d e n t i c a l   i n   e v e r y   d e -  
t a i l .  The  top-down d e s i g n   t h a t  w a s  implemented   requi res   each   code   to   have  
t h e  same c a l l i n g   s e q u e n c e  a t  i t s  h i g h e s t  levels. Subrout ines  and COMMON 
blocks  which must b e   d i f f e r e n t  are  found at t h e   l o w e s t   ( i n n e r r m o s t )   l e v e l s  
of STEALTH. I n   b e t w e e n ,   t h e r e  are  s u b r o u t i n e s   t h a t   h a v e   i d e n t i c a l  names, 
func t ions ,   and   s t ruc tu re ,   bu t   d i f f e ren t   spec i f i c   p rog ramming .  

The a c t u a l  FORTRAN programming u t i l i z e s  a subset  of FORTRAN t h a t  is  
common t o  IBM, Univac,  and CDC computers.   The  use  of  these FORTRAN state- 
ments is f u r t h e r   r e s t r i c t e d  by format   convent ions   tha t   p roduce   very  st ruc- 
tured  programming.   In   addi t ion,  FORTRAN v a r i a b l e  names are formed  by com- 
b in ing   th ree-charac te r   roo ts   wi th   one-   and   two-charac te r   p ref ixes   and   suf -  
f i x e s  . 

The STEALTH codes   have   been   des igned   to   be  most e f f i c i e n t   f o r   t h e   o c c a -  
s i o n a l   u s e r .  The s t anda rd   ve r s ion   combines   ex tens ive   check ing   l og ic   wh ich  
checks  and  rechecks a use r ' s   i npu t   and   checks   and   r echecks   t he   s t a tus   o f   t he  
c a l c u l a t i o n  as it proceeds.   The  codes  a lso  provide many s t anda rd   mode l s   fo r  
materials, boundary   condi t ions ,  e tc .  
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Computer memory requirements   range  f rom  135 000 t o  155 000 words  of 
o c t a l   s t o r a g e   i n  CDC 7600. T h i s   s i z e   h a s   b e e n   a c h i e v e d   b y   o v e r l a y i n g   t h e  
GENERATOR. Fur the r   r educ t ion   o f   code   s i ze   can   be   ach ieved   by   e i the r   ove r -  
l a y i n g   t h e  GENERATOR some  more,   over laying  the PROCESSOR, o r  by   r educ ing   t he  
s i z e  of c e r t a i n  COMMON blocks.   Reducing  the  s ize   of  COMMON b l o c k s   u s u a l l y  
r e s u l t s   i n  a r e d u c t i o n   i n   t h e  number o f   g r i d   p o i n t s   t h a t   c a n   b e  computed. 

O the r   t a i l o r ings   o f   t he   codes   can   be  made t o   s u i t   s p e c i f i c   c o m p u t i n g  
environments  and/or  problems.  For  example, it is s imple   t o   pu t   "ha rdwi red"  
material models   in to   the   code   to   improve   code   speed .  it is a l s o   p o s s i b l e   t o  
remove t h e  trace and  debug  opt ions,   again  improving  speed.   For   short   pro-  
duc t ion   runs   where   gene ra t ion  is a l a r g e r   p r o p o r t i o n   o f   t h e   r u n  t i m e ,  i t  i s  
p o s s i b l e   t o  write a p r e g e n e r a t o r   t o   r e d u c e  GENERATOR costs. F i n a l l y ,  
spec ia l -purpose   vers ions   o f  STEALTH c a n   b e   c r e a t e d   i n   o r d e r   t o   i m p r o v e   e f f i -  
ciency.  For  example, a hydrodynamic-only  version  of STEALTH r u n s  20% f a s t e r  
t h a n   t h e   s t a n d a r d   v e r s i o n   f o r   t h e  same f lu ids   p roblem.  

The FORTRAN cod ing   conven t ions   and   t he   s t ruc tu ra l   modu la r i ty  make 
STEALTHs lD, 2D, and 3D portable   and  device- independent .  Word s i z e  and 
memory s t o r a g e   l i m i t a t i o n s  are de termined   f rom  the   requi rements   o f   an   ac tua l  
c a l c u l a t i o n .   F o r  most c a l c u l a t i o n s ,  i t  is  d e s i r a b l e   t o   u s e  a machine  which 
has  a word s i z e   g r e a t e r   t h a n  48 b i t s  and memory of a t  least  30 000 decimal 
words. However , it  i s  p o s s i b l e   t o   p e r f o r m  STEALTH s i m u l a t i o n s  at a word 
s i z e  of 32 b i t s  and a memory of 20 000 dec ima l  words.  The STEALTH code  sys-  
t e m  is made up  of  more t h a n  100 000 FORTRAN cards. 

PROGRAMMING  STRUCTURE 

The  development  of a user -or ien ted ,  w e l l  documented,   Wilkins   expl ic i t  
f i n i t e -d i f f e rence   compute r   code  is based  on  the  premise  that   programming 
s t ruc tu re ,   i npu t /ou tpu t ,   and   documen ta t ion   shou ld   be   fo rmula t ed   f rom  phys i -  
cal  ra ther   than   mathemat ica l   (or   numer ica l )   concepts .   Theory ,   code   s t ruc-  
t u r e ,  and  documentation are f u n d a m e n t a l   c a t e g o r i e s   i n   t h e   d i s c u s s i o n  of u s e r  
o r i en ta t ion .   E lemen t s   o f   t hese   ca t egor i e s   (Tab le   2 )   shou ld   be  as  similar i n  
vocabulary   and   no ta t ion  as p o s s i b l e .   U s i n g   t h e   t h e o r e t i c a l   e l e m e n t s  of 
a n a l y s i s  as t h e   b a s i s   f o r   t h i s   d e s i g n ,   a u t o m a t i c a l l y   l i n k s   t h e   p h y s i c a l  
t h e o r y  and  programming s t r u c t u r e   i n  a way i n  which  program  development is 
e a s i l y   a c h i e v e d .   I n   t h e   d i s c u s s i o n   t h a t   f o l l o w s ,  a s t a n d a r d  view of  program 
s t ruc tu re   has   been   adap ted   t o   t hese   concep t s .  

The STEALTH computer  programs  do  numerical   simulations as opposed t o  
numer ica l   eva lua t ions .  A s i m u l a t i o n  is ca r r i ed   ou t   t h rough   execu t ion   o f  
th ree   separa te   "phase   g roups" .   Appropr ia te  names f o r   t h e s e   p h a s e   g r o u p s  are 
GENERATOR, PROCESSOR, and OUTPUT ANALYZER. (Analogous  processing  concepts  
exist  for  computer  systems.  They are: c o m p i l e r / l o a d e r ,   c e n t r a l  
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p r o c e s s i n g   u n i t  (CPU), and   ou tput   devices ,   respec t ive ly . )  The conceptua l  
f u n c t i o n s  of each   phase   g roup  are summarized  below. 

0 The GENERATOR a c c e p t s   d e t a i l e d   d a t a   ( f r o m   c a r d s   o r   k e y b o a r d )  as 
i n p u t   f o r  many d i f f e r e n t   t y p e s   o f   c o m p u t e r   c a l c u l a t i o n s .  A l l  input  
d a t a  are checked as thoroughly  as p o s s i b l e .   I f   n o   s e r i o u s   e r r o r s  
are d e t e c t e d ,  an i n p u t   f i l e   f o r   t h e   a p p r o p r i a t e  PROCESSOR phase 
group is prepared .  

0 The PROCESSOR accep t s   p re re so lved   ( l i nk -ed i t ed )   da t a   f rom  the  
GENERATOR as a c o m p l e t e   s p e c i f i c a t i o n   f o r  a c a l c u l a t i o n   i n   o r d e r   t o  
perform a s p e c i f i c   p h y s i c s   c a l c u l a t i o n .   D u r i n g   t h e   c a l c u l a t i o n ,  
o u t p u t   d a t a  are p r e p a r e d   t o   b e   i n p u t   f o r   b o t h   t h e  OUTPUT  ANALYZER 
and t h e  GENERATOR. These d a t a   t a k e   t h e   f o r m   o f   a r c h i v e   f i l e s .  The 
f i l e   f o r   t h e  GENERATOR i s  c a l l e d   t h e  restart f i l e ,   w h i l e   t h e   d a t a  
f o r   t h e  OUTPUT ANALYZER are  known simply as a rch ive   da t a .   The  
PROCESSOK is  analogous t o  a CPU. I ts  pr imary  purpose i s  t o  compute 
( c runch   numbers )   and   d i r ec t   da t a   t o   ou tpu t   dev ices .  

0 The OUTPUT ANALYZER accepts d a t a   f r o m   t h e  GENERATOR o r  PROCESSOR 
phase   g roups   i n   a r ch ive   fo rma t .  It p e r f o r m s   a n a l y s i s   f u n c t i o n s   s u c h  
as p l o t t i n g ,   s p e c i a l   p r i n t i n g ,   d a t a   r e d u c t i o n ,  e tc .  Output   da ta  
f r o m   t h e  OUTPUT  ANALYZER are p r e s e n t e d   e i t h e r  i n  hard  copy  form  or 
as i n p u t   f i l e s   f o r   o t h e r  OUTPUT ANALYZERS. It is exac t ly   ana logous  
t o  hard  copy  output   funct ions  of  a h a r d w a r e   p r i n t e r ,   p l o t t e r ,   o r  
o t h e r   o u t p u t   d e v i c e .  

F igu re  6 i s  a s c h e m a t i c   d i s p l a y   o f   t h e   i n t e r a c t i o n   b e t w e e n   p h a s e   g r o u p s .  

The GENERATOR phase  group is a combinat ion  compiler / loader .   For  exam- 
p l e ,   i n p u t   t o   t h e   c o m p i l e r   f u n c t i o n   o f   t h e  GENERATOR is t h e   c o d e   i n p u t   f o r  a 
pa r t i cu la r   p rob lem.   The   l oade r   ( l i nk -ed i t ing )   func t ion   o f   t he  GENERATOR 
p e r f o r m s   t h e   t a s k   o f   r e s o l v i n g   s e v e r a l   t y p e s   o f   i n p u t   i n t o  a s i n g l e   f i l e   t o  
be  read by a n   a p p r o p r i a t e  PROCESSOR. The GENERATOR is  c a p a b l e   o f   s e t t i n g  up 
( load ing)  a var ie ty   o f   p roblems  f rom a spectrum  of  input modes. There are 
two GENERATOR inpu t  modes, s t anda rd  and nonstandard.  

S t anda rd   Record   Fo rma t   ( s t a r t   o r   r e s t a r t )  

c a r d s  
keyboard 

0 Nons tanda rd   Inpu t   ( s t a r t   on ly )  

l i b r a r y   f i l e  
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The PROCESSOR phase  group i s  analogous t o   t h e  CPU of a computer. I ts  
purpose is t o  compute   phys ics   f rom  appropr ia te   a lgor i thms.   Input   da ta   for  
t h e  PROCESSOR are  prepared   by   the  GENERATOR. Output   da ta  are i n   t h e   f o r m  of 
a n   a r c h i v e   f i l e .  The a r c h i v e   f i l e   c o n t a i n s  a complete summary of a l l  t h e  
r e s u l t s   o f   t h e   p h y s i c s   c a l c u l a t i o n s   p e r f o r m e d .   T h e   f o r m a t   o f   t h e   f i l e  is a 
self-contained,  easy-to-read  format  and is  d e s i g n e d   t o   b e   u s e d  by o ther   p ro-  
grams as input   (e .g . ,   programs i n  the  OUTPUT  ANALYZER phase  group can r e a d  
t h e   a r c h i v e  f i l e  as i n p u t ) .  An abbrev ia t ed   fo rm  o f  t he  archive f i l e ,  known 
a s  t h e  res tar t  f i l e ,  is  c r e a t e d  as a n   i n p u t   f i l e   f o r   t h e  GENERATOR. I f  a 
c a l c u l a t i o n  must b e   r e s t a t e d ,  i t  is more convenient t o   u s e   t h e   a b b r e v i a t e d  
f i l e   t h a n  a c o m p l e t e   a r c h i v e   f i l e .  

The OUTPUT ANALYZER phase  group is  composed  of many d i f f e r e n t   s t a n d -  
alone  computer  programs. Among t h e s e  are  p lo t t i ng   p rog rams ,   Four i e r  
a n a l y z e r s ,   d a t a   r e d u c t i o n   c o d e s ,  e t c .  Output   ana lys i s  may be  performed  on 
d a t a   f r o m   b o t h   t h e  GENERATOR and PROCESSOR phase  groups.  A l l  d a t a  are  
t r a n s m i t t e d   i n   a r c h i v e   f o r m a t   b u t   o n l y   t h e  PROCESSOR creates a permanent 
a r c h i v e   f i l e .  (The OUTPUT ANALYZER c a n   b e   u s e d   t o  make a reduced   a rch ive  
f i l e ,   i f   r e q u i r e d . )  

Output   f rom  the  OUTPUT  ANALYZER phase  group i s  u s u a l l y   i n   t h e   f o r m  of 
hard  copy  ( that  i s ,  p r i n t e d   p a g e s ,   p l o t s ,   e t c . ) .   F i l e s   t h a t  a re  produced as 
output  are  u s u a l l y   i n   a r c h i v e   f o r m a t   a l s o  s o  t h a t   t h e y   c a n   b e   u s e d  as input  
f o r   o t h e r   d a t a   a n a l y z i n g   f u n c t i o n s .   T h e s e   f i l e s  a re  n o t   i n t e n d e d   t o   b e   u s e d  
as i n p u t   t o   t h e  GENERATOR o r   t h e  PROCESSOR, a l though i t  i s  c o n c e i v a b l e   t h a t  
t hey   cou ld   be   u sed   t h i s  way. 

Phases are t h e   l o g i c a l   s u b d i v i s i o n s   o f  a phase  group.  They a re  groups 
of   subrout ines   which  perform a par t icu lar   log ica l   "macrofunct ion"   which  
p r e s e r v e s   t h e   s i m p l i c i t y   o f   p h y s i c a l   c o n c e p t s .   I n   c o n t r a s t ,   s u b r o u t i n e s  
perform  "microfunct ions"   and are de f ined   by  a s p e c i f i c   f u n c t i o n a l  task such 
a s  r ead ing ,   check ing ,   ca l cu la t ing ,  e t c . ,  o r  a well def ined  combinat ion  of  
t h e s e   t a s k s .  

A phase   g roup   can   be   d iv ided   i n to  as =any phases  as  necessary.  One 
spec ia l  phase known a s  t h e   U t i l i t y   p h a s e  is p a r t  of  every  phase  group. It 
con ta ins   sub rou t ines   wh ich  are used  by  more  than  one  phase  and  which f a l l  
i n to   one   o f   t he   fo l lowing   ca t egor i e s :  

(1) System  or  Machine  Dependent 
( 2 )  Input   Rela ted  
( 3 )  Output   Related 
( 4 )  E n t e r / E x i t  
( 5 )  E r r o r  
( 6 )  Ar i thme t i c  
( 7 )  Misce l laneous  
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A l l  phases are  chosen   f rom  log ica l   o r   concep tua l   cons ide ra t ions   d i c t a t ed  by 
t h e   t a s k s   t o   b e   p e r f o r m e d   b y  a pa r t i cu la r   phase   g roup .  

P h a s e s   i n   t h e  OUTPUT  ANALYZER cannot   be  def ined a p r i o r i .   T h i s   p h a s e  
group may r e q u i r e   d i f f e r e n t   p h a s e   s t r u c t u r e   f o r   d i f f e r e n t   t y p e s  of  problems 
and d i f f e r e n t   t y p e s  o f   a n a l y s e s ,   r e s p e c t i v e l y .  However, t h e  GENERATOR and 
PROCESSOR phases  are amenable t o  a genera l   des ign   concept   based   on   the  phy- 
s i c a l  n o t i o n s   a s s o c i a t e d   w i t h   t h e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   b e i n g  
solved.  

The   fundamen ta l   i deas   beh ind   t he   des ign   o f   t he   phase   s t ruc tu re   fo r   t he  
GENERATOR and PROCESSOR phase  groups  of STEALTH come d i r e c t l y   f r o m   t h e  
t h e o r e t i c a l   e l e m e n t s   o f   a n a l y s i s  of a physical  system.  That i s ,  l o g i c a l l y ,  
STEALTH  may be  viewed i n  terms o f   t h e   f o l l o w i n g   d i s t i n c t   s u b d i v i s i o n s :  

o Conservat ion  Equat ions 

mass 
moment um 
energy 

Boundary  Conditions 

g e o m e t r i c   c o n s t r a i n t s  
boundary  values 

0 I n i t i a l   C o n d i t i o n s  

i n t e n s i v e  
e x t e n s i v e  

0 Cons t i tu t ive   Equa t ions  

mechanical 
thermal  

Des ign ing   t he  GENERATOR and PROCESSOR f o r  STEALTH f rom  these   fou r  ca- 
t egor ies i s  r e l a t i v e l y   s t r a i g h t f o r w a r d .  The  conservation  equations  (equa- 
t i o n s  of  change) a re  t h e   e q u a t i o n s   t o   b e   s o l v e d ;   t h e y  are t h e   k e r n e l   o f   t h e  
PROCESSOR. They d e s c r i b e   t h e   r e s p o n s e   o r   m o t i o n   o f  a physical  system.  The 
i n i t i a l  and  boundary  values  and  the  const i t  u t   i v e   e q u a t i o n s   s u p p l y   t h e   c o n d i -  
t i o n s   o r   c o n s t r a i n t s   f o r   s o l u t i o n .  The  computational  network i s  formed  from 
t h e   g e o m e t r i c   c o n s t r a i n t s  and t h e  t ime-dependence  specif icat ion.  

The STEALTH GENERATOR phase  group i s  broken down in to   n ine   phases   which  
are  f u r t h e r   d i v i d e d   i n t o  two g roups .   The   f i r s t   g roup   con ta ins  two  non- 
opt ional   phases   which must b e   e x e c u t e d   p r i o r   t o   t h e   e x e c u t i o n   o f   o t h e r  
GENERATOR phases   and   the   Ut i l i ty   phase .   The   second  group is composed  of s i x  
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which are u s e d   s e l e c t i v e l y   t o   s a t i s f y   s p e c i f i c   p r o c e s s i n g  
a p a r t i c u l a r  PROCESSOR. While   the  two  nonopt ional   phases  

must be   execu ted   i n  a p a r t i c u l a r   o r d e r ,   t h e   p h a s e s   i n  
t h e  lat ter group may be   execu ted   i n   any   o rde r .  

The  two phases   i n   t he   nonop t iona l   g roup  are c a l l e d  CMNGEN and PRBGEN. 
CMNGEN i n i t i a l i z e s  a l l  common b locks  and PRBGEN p r o v i d e s   d a t a   f o r  a 
GENERATOR scheduler.   The GENERATOR scheduler  is a subrou t ine   wh ich   de t e r -  
mines  which  of  the l a t t e r  group ' s   op t iona l   phases  is n e c e s s a r y   f o r  a p a r t i c -  
u l a r  PROCESSOR. 

The f u n c t i o n s   o f   t h e   o p t i o n a l   p h a s e s   i n   t h e  GENERATOR phase  group are  
(1) material model d e f i n i t i o n ,  MATGEN, ( 2 )  mesh o r   g r id -po in t   gene ra t ion ,  
GPTGEN, ( 3 )  z o n e   i n t e r i o r   i n i t i a l i z a t i o n ,  ZONGEN, ( 4 )  boundary   va lue   spec i f -  
i c a t i o n ,  BDYGEN, ( 5 )  t i m e  c o n t r o l ,  TIMGEN, and ( 6 )  e d i t  s p e c i f i c a t i o n ,  
EDTGEN. F i g u r e  7 is a f l o w   c h a r t   o f   t h e   p h a s e s   i n   t h e  GENERATOR phase 
group.  Table 3 shows the   cor respondence   be tween  the  s ix  o p t i o n a l  GENERATOR 
phases and t h e   l o g i c a l   e l e m e n t s  of des ign .  

Within  each GENERATOR p h a s e   t h e   s u b r o u t i n e   c a l l i n g   s t r u c t u r e   ( l o g i c )  is 
similar. Each  phase  contains  a phase  scheduler   subrout ine  which ca l l s  a l l  
the   "main l ine"   subrout ines .   The   scheduler  name is - - - GEN,  where _ _ _  is 
t h e   p h a s e  name. 

The ma in l ine   sub rou t ines  are  an   i npu t   p rocess ing   sub rou t ine ,  - - - INP; a 
s u b r o u t i n e   t h a t   c h e c k s   i n p u t  d a t a ,  - - -CHK; a s u b r o u t i n e   t h a t   p r i n t s   o u t  
r e l e v a n t   d a t a   f o r   t h e   p h a s e ,  "-PRT; and a subrou t ine   t ha t   a l l ows   i npu t   and  
computed da ta  t o   b e   p l o t t e d ,  - - - PLT 

I n  a d d i t  i o n   t o   t h e   m a i n l i n e   s u b r o u t i n e s ,   t h e r e  is a group of  subrou- 
t i n e s  known as   "ke rne l "   sub rou t ines .   These   sub rou t ines   pe r fo rm  gene ra t   i on  
t a s k s   s p e c i f i c   t o   t h a t   p h a s e .   F i g u r e  8 shows a conceptua l   f lowchar t   for  a 
t y p i c a l  GENERATOR phase .   Kerne l   subrout ines  may be  ca l led  a t  any time i n  
the   phase ,   whereas   ma in l ine   sub rou t ines  must b e   c a l l e d   i n   t h e   p r o p e r   o r d e r .  

A l l  GENERATOR phases  may c a l l  U t i l i t y   sub rou t ines   f rom  any   sub rou t ine .  
( U t i l i t y   s u b r o u t i n e s  are d e f i n e d  as those   sub rou t ines   wh ich  are common t o  
more than   one   phase   i n  a phase  group) .  However, c e r t a i n   u t i l i t i e s  are 
called f r o m   s p e c i f i c   l o c a t i o n s   o r   o n l y  a t  s p e c i f i c  times. For  example, 
ENTER/EXIT u t i l i t i e s  are t h e   f i r s t  and last e x e c u t a b l e   s t a t e m e n t s   i n   e a c h  
ma in l ine   sub rou t ine  ; o n l y  - - - INP and - - - CHK c a l l  ERROR u t  ilit ies; INPUT 
u t i l i t i e s  are c o n c e n t r a t e d   i n  - - - INP, etc. A l ist of t y p i c a l   u t i l i t i e s  
are shown i n   T a b l e  4.  

Each PROCESSOR phase  group is composed of e igh t   phases  -- one  phase 
less t h a n   t h e  GENERATOR phase   g roup   ( t he re  is one   phase   co r re spond ing   t o  
each   of   the  GENERATOR phases   excep t   t he  CMN phase).   For STEALTH, a l l  phases 
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are mandatory  and a l l  phases  must b e   e x e c u t e d   i n  a p r e c i s e   o r d e r .   F i g u r e  Y 
d i s p l a y s   t h e  PROCESSOR phase  group  f lowchart  for serial STEALTH. 

In   each  PROCESSOR p h a s e   t h e r e  is a t  least o n e   m a i n l i n e   s u b r o u t i n e   c a l l e d  
"- PRO. It is analogous t o  - - - GEN i n   t h e  GENERATOR, where _ _ _  is t h e  
phase name i d e n t i f i e r .   I n   t h e  GPT and ZON p h a s e s   t h e r e  are two  o ther  main- 
l i n e   s u b r o u t i n e s ,  - - - OLD and - - - NEW. Subrout ine  - - - OLD t r a n s f e r s   d a t a  
a t  times n-1/2  and n f r o m   a r r a y   v a r i a b l e   s t o r a g e   l o c a t i o n s   t o   s t o r a g e   l o c a -  
t i o n s   i n   n o n a r r a y   v a r i a b l e s .   T h e s e   n o n a r r a y   v a r i a b l e s  are used i n  p h y s i c s  
c a l c u l a t i o n s   t o   u p d a t e   l l o l d l l   v a l u e s   o f   v a r i a b l e s   ( t i m e s  n-1/2  and  n) t o  
"new" va lues   o f   va r i ab le s   ( t imes   n+1 /2  and n + l )  . Subrout ine - - - NEW t h e n  
t r a n s f e r s   t h e   d a t a  a t  times n+1/2  and  n+l   f rom  nonarray  s torage  locat ions 
t o   a p p r o p r i a t e   a r r a y  st o r a g e   l o c a t   i o n s .  

A l l  o t h e r   s u b r o u t i n e s   i n   t h e  PROCESSOR are k e r n e l   o r   u t i l i t y   s u b r o u -  
t i n e s .  A special  g roup   o f   ke rne l   sub rou t ines ,   wh ich   desc r ibes  material 
model r e s p o n s e   c h a r a c t e r i s t i c s ,  is found i n   t h e  ZON phase   o f   t he  PROCESSOR. 

For a v e c t o r  mode ve r s ion   o f  STEALTH, t h e  PROCESSOR would t a k e  a 
s l i g h t l y   d i f f e r e n t   f o r m  at  t h e   s u b r o u t i n e  level  and  would r e q u i r e  a d i f -  
f e r e n t   p h a s e   c a l l i n g   o r d e r .  However, t h e   o v e r a l l   d e s i g n   c o n c e p t s   w o u l d  
remain. 

CONCLUSION 

Implementing a s t r u c t u r e d   a r c h i t e c t u r e   f o r   t h e  STEALTH code  system  has 
made it ( 1 )  easier t o  debug  and  modify l o g i c ,   ( 2 )   s i m p l e r   f o r  new u s e r s   t o  
l e a r n  how the   codes   work ,  and ( 3 )  i d e a l   f o r   m a i n t a i n i n g   v e r s i o n s   o n   d i f -  
ferent  computer  hardware.  The " theore t ica l   e lements   o f   ana lys i s" ,   which  are 
t h e   b a s i s   f o r   p r o g r a m   d e s i g n   i n  STEALTH, have  proven t o   b e  a usefu l   concept  
f o r   s o l v i n g   g e n e r a l   n o n l i n e a r   e q u a t i o n s   a p p r o x i m a t e d   b y   t h e   W i l k i n s   e x p l i c i t  
f i n i t e - d i f   f e r e n c e   s o l u t i o n   t e c h n i q u e .  
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TABLE 1. THEORETICAL  ELBIENTS OF A PHYSICAL  SYSTEM 

Conservation l a w s  p h y s i c a l   p r i n c i p l e s  
governing a l l  mot i o n  

Boundary  condi t ions  geometr ic   constraints  
and  boundary  values 

I n i t i a l   c o n d i t i o n s   i n i t i a l  s tat  e of t h i n g s  

C o n s t i t u t i v e   r e l a t i o n s  material models 

TABLE 2. ELEMENTS OF THEORY, CODE STRUCTURE, AND DOCUMENTATION 
AFFECTING USER ORIENTATION 

THEORY 

1. Physical  Laws 

2. Mat hemat i ca l  equat   ions  

3. Numerical  equations 

CODE STRUCTURE DOCUMENTATION 

1. Programming p r a c t i c e s  

2. Modular s t r u c t u r e  

3. Input  /Output 

1. Input manual 

2. Flow c h a r t s  

3. Vocabulary 
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TABLE 3. CORRESPONDENCE BETWEEN OPTIONAL GENERATOR PHASES 
AND CONTINUUM MECHANICS  ELIHENTS OF ANALYSIS 

C o n s t i t u t i v e   E q u a t i o n s  (material m o d e l s )  . . . . . .  MATGEN 

B o u n d a r y  Condi t ions (cont ro l  volume d e f i n i t i o n )  

g e o m e t r i c  cons t ra in ts  . . . . . . . . . . . . .  GPTGEN 
b o u n d a r y  values . . . . . . . . . . . . . . . .  BDYGEN 

I n i t i a l  C o n d i t i o n s  . . . . . . . . . . . . . . . . .  ZONGEN 

C o n s e r v a t i o n   E q u a t i o n s  . . . . . . . . . . . . . . .  TIMGEN 

TABLE 4 .  TYPICAL  UTILITY PHASE  SUBROUTINES 

SYSTEMS  OUTPUT " ENTER/EXIT  ARITHMETIC 

RUNDAT 
RUNT IM 

I N  PUT 

CRDTTL* 
CRDINP* 
CRDPRT* 
LIBTTL 
L I B   I N P  
LIBPRT 
KBDTTL* 
KBDINP* 
KBDPRT 
REWFLS 
RINREC 
GETDTA 
WOTREC 
PUTDTA 

PGEHDG SBRENT 
TIM HDG PHS ENT 
PHSHDG SBREXT 
I N  PHDG * PHSEXT 
CHKHDG GENEXT 
PRTHDG PROEXT 
PLTHDG ERREXT 

ERROR 

CHRERR 
FLDERR 
LIMERR 
MDLERR 
RGEERR 
SBRERR 
TYPERR 

FNCONE 
MYFNO 
FNCTWO 
MYFNT 
FDVONE 
MYFDO 

MISCELLANEOUS 

I N  PDGT 
FLDCHK* 
CNMTA 
PHSCHK 

* 
Uses s t a n d a r d  input  record f o r m a t  
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t = 4  t = 8  

t = 1 2  t = 16 

F igure  1.- Pene t r a t ion   o f  s teel  p r o j e c t i l e   i n t o  aluminum t a r g e t   u s i n g  STEALTH 2D.  
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t = 100 

t = 200 

t = 400 t = 700 

t = 500 t = 800 

t = 300 t = 600 t = 900 

Figure  2.- Axisymmetric STEALTH 2 D  s imula t ions  of  energy release i n   f l u i d  
c o n t a i n e d   i n   o v e r s t r o n g   c y l i n d r i c a l   c o n t a i n e r .  
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I 

S i w l a t e d  heaters 

0 10 20 30 40 
Horironcal dircancc from heaced pillar ( f t )  

F i g u r e  3 . -  Nuclear waste r e p o s i t o r y   s i m u l a t i o n   u s i n g  STEALTH 2D. 
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t = 2.0 

t = 4.0 

t = 6.0  

Figure  4 .  - T r a n s l a t i o n a l  

t = 8.0 

-PTm 
t = 12.0 

1 
t = 14.0 

1 
t = 16.0 

t = 18.0 

symmetry STEALTH 2 D  s i m u l a t i o n  of l o n g   r i g i d  D i D e  
being  pushed down i n t o   t a n k  of water. 

” 
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3. 4. 

5. 

Figure 5.- Rocking of b u i l d i n g  on s o i l  i s l a n d  using STEALTH 2 D .  
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F i g u r e  6 . -  Phase  group  f lowchart .  
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Phase 
Scheduler 

Mainline 
Subroutines 

3. r "- PRT 1 
Ail mainline subroutine8 

must be called in order shown . 
Kernel rubroutines may be 

called at any Point. 
( - - - ir the phase name.) 

Figure 8.- Typical  GENERATOR  phase structure. 
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Utilities 

I 

I 

EDTPRO 

Figure 9.- PROCESSOR  phase group  flowchart. 
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SELF-ADAPTIVE  INCREMENTAL 

NEWTON-RAPHSON ALGORITHMS* 

Joseph Padovan 
University of  Akron 
Akron , Ohio  44325 

SUMMARY 

Multilevel  self-adaptive Newton-Raphson type  strategies  are developed t o  
improve the solution  efficiency of nonlinear  f inite element  simulations  of 
s t a t i c a l l y  loaded s t ructures .  The overall  strategy  involves three basic  levels. 
The f i r s t  level  involves  preliminary  solution  "tunneling"  via  primative  opera- 
tors. Secondly, the  solut ion  is   constant ly  monitored via  so-called  quality/ 
convergence/nonlinearity tests.  Lastly,  the  third  level  involves  self-adaptive 
algorithmic  update  procedures aimed a t  improving the  convergence  characteris- 
t i c s  o f  the Newton-Raphson s t ra tegy.  Numerical experiments  are  included t o  
i l l u s t r a t e   t he   r e su l t s  o f  the  procedure. 

INTRODUCTION 

Finite element ( F E )  or  difference  simulations o f  continuum  problems gener- 
ally  lead t o  nonlinear  modelling  equations [1,2] .  Generally, such simulations 
must be solved by va r ious  techniques which are   inherent ly   i terat ive  in   nature .  
For instance, such methodologies as d i r ec t  numerical integration, Newton-Raph- 
son ( N R )  , and modified Newton-Raphson ( M N R )  , as  well  as  the  incremental ver- 
sions of  such  procedures (INR, IMNR) have a l l  been  employed [Z] .  Since  the 
types of  nonlinearity  exhibited by continuum problems are  b o t h  diverse and com- 
plex , the  question of the  best  choice of an appropriate  solution  algorithm 
inevitably  arises.  Note, while many alternatives  are  available,   generally  the 
various  solution  procedures may have special  advantages f o r  cer ta in   c lasses  of 
problems b u t  may exhibi t  poor convergence for   other   s i tuat ions.  

In this context,  the  ideal  general  purpose ( G P )  nonlinear FE code should 
have  numerous algorithmic  options augmented w i t h  a degree  of a r t i f i c i a l   i n t e l -  
ligence. Namely, the problem solving  capability  should  involve a heuris t i -  
ca l ly  gu ided  t r i a l  and error  search i n  the  space  of  possible  solution  via an 
automatically  structured  algorithm.  Unfortunately,  because  of the inherent 
d i f f icu l t ies   assoc ia ted  w i t h  code archi tecture  and kinematic,  kinetic, con- 
s t i t u t i v e  and boundary conditior!  formulations,  generally  only one algorithmic 
option i s  usually  available  in GP codes.  In this  context,  because  of i t s  wide 

* T h i s  work has been pa r t i a l ly  supported by the ONR under  Grant N00014-78-C- 
0691  and  by NASA under Grant NA63-54. 
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appl icabi l i ty ,  most GP nonlinear FE codes employ  some v a r i a n t  of either  the 
s t ra ight   o r  modified INR a1 gorithmic  procedures. 

Note, while  nonlinear codes present  the  user  with f a r  reaching  capabilities, 
without a priori  physical i n s i g h t ,  expensive  parametric  studies  are  oftentimes 
necessary  to  insure  adequate s o l u t i o n  convergence. For instance , unless  the 
proper  load  increment i s  employed, e i the r  poor convergence or o u t  of balance 
loads  are  generally  encountered.  Incorporating  heuristic programming could 
eliminate some of  the  expensive and time consuming parametric  studies t h a t  are  
now required t o  determine  the  proper  incrementation  necessary  for  reasonable 
convergence. 

In view of the shortcomings  of  the current  generation of solution  al- 
gorithms, th i s  paper will  consider  the development of self-adaptive NR s t r a -  
tegies  for  the  solution of nonlinear FE or  difference  simulations o f  s t a t i -  
cal ly  loaded s t ructures .  The  main thrust  will be to  consider  strategies which 
for  the most p a r t  are  compatible  with  currently  available GP codes. The over- 
a l l  development will be considered  in  three main levels.  The f i r s t  will  in- 
volve the use of INR operators t o  "tunnel"  into  the  solution  space  in  the usual 
manner. The second level  will  involve  the  constant  monitoring o f  the  different 
stages of solution  via  various qual i ty/convergence/nonl  ineari  ty t e s t s .  Finally, 
the 1 as t   l eve l   i s  an outgrowth of the  findings  of  the  second; namely, i f  one or 
more o f  the quality/convergence/nonlinearity tests  are  violated,  various  sce- 
narios  are then triggered t o  modify the INR strategy. 

Based on the  foregoing,  the paper will  outline  in  detail  the  multilevel 
static  solution  strategy,  the development of the quality/convergence/nonlinea- 
r i t y   t e s t s   a s  well as overview the  various  self-adaptive  iterative update pro- 
cedures. The analytical  considerations  will be complemented by several nume- 
rical  experiments which outline  the  various  aspects of the  quality/convergence/ 
nonlinearity  tests and which demonstrate  the  self-adaptive  strategy. 

MULTILEVEL  SOLUTION STRATEGY: 

OVERVIEW 

As noted earlier,  unless  the  proper  load  incrementation i s  employed, 
e i ther  poor convergence o r  o u t  of balance  loads  are  generally  encountered. 
Such anomalous behavior is  generic t o  all  nonlinear codes employing non-self- 
adaptive INR a1 gorithms. In this  context,  the main thrust,  of  this work i s  t o  
establish a three  level  iterative  solution  strategy  involving: 

i )  Level 1 ; Preliminary  solution development via  the  primative b u t  
computational l y   e f f i c i en t  IMNR algorithm; 

i i )  Level 2 ;  Solution  monitoring v i a  qual ity/convergence/nonl  ineari  ty 
t e s t s  and;  

opera tor. 
i i i )  Level 3; Self-adaptive update  procedures t o  modify the  primative 
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Note here  computational efficiency i s  meant to be a measure of the amount of 
time spent d u r i n g  a cycle o f  i t e ra t ion  n o t  the  overall  process. 

The  main purpose of  the f i r s t   l e v e l  of the  overall   strategy  is   essentially 
twofold. The f i r s t  i s  to  generate  the most efficient  solution  if   the  requisite 
qual ity/convergence/nonl inear i ty   cr i ter ia   are   sat isf ied.   I f  n o t ,  the  infor- 
mation generated by the IMNR "tunneling" o f  the  solution  space  can,  through  the 
second level  tests,   tr igger  the proper t h i r d  level  action. 

In terms  of the  foregoing, i t  follows  that  the second level i s  essential  ly 
threefold  in  nature. The quali ty check involves  monitoring:  the ra te  of con- 
vergence;  monotonicity;  positive,  negative and semi-definiteness;  etc. The con- 
vergence t e s t s  check for   outr ight   solut ion  fa i lure ,  and lastly,  the  nonlin- 
earity  tests  ascertain  the  "degree" of nonlinearity  excited. 

In the t h i r d  level , the  foregoing  information i s  used t o  trigger  various 
self-adaptive  modifications of the IMNR i terat ive  s t ra tegy.  Namely: 

i )  Global stiffness  reformation; 

i i  ) Preferential  local  reformation a n d ;  

i i i )  Load increment  adjustment. 

Such algorithmic  adjustments form the  heart of the  third  level of the  overall 
strategy. 

INR FAMILY OF STRATEGIES 

The overall  family of INR s t ra tegies  can essent ia l ly  be established by 
introducing  increasingly  severe  restrictions t o  the  straight methodology. 
Specifically,   start ing w i t h  the  virtual work theorem depicted by [ l ]  

/ 6 g  S d v = Y  F 
R 

T T - " 

the  typical FE shape function  formulation  yields  the  following  nonlinear  large 
deformation field  equations [1] 

J [B*IT S dv = F 
R - - 

where 
65 T- = - 1 (6Ui , j+6u j  , i+u2 , i6U2 ,  j + u  

2 2,jGu!2,,i 1 

S T = ( S l l , S  - 2 2  Y S  3 3  , s 12 Y S  2 3  Y S  3 1  1 
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such t h a t  g ,  s,  and ,F are,   respectively,  the s t ra in   tensor  i n  vector form, 
the second Piola  Kirchhoff pseudo s t ress   t ensor ,  the nodal displacement  vector, 
and l a s t l y ,  the nodal, force  vector. 

To sol ve ( 2 )  , the Taylor  expansion theorem can be used t o  establ ish the 
following  tangent stiffness formulation, namely 

where A& denotes the i th nodal displacement  iterate  associated  with  the Rth 
load  increment. T h e  nodal displacement,  tangent st iffness and load  imbalance 
are  defined by 

R 

AFi = F - J [B*(Y! ) I T  a ( v i -  ) dv R R  R - " R  -1 - 1  

such that   Ik ,  [ O ( Y ~ - ~ ) ] ,  ED and F respectively  denote  the number of 
i t e ra t ions  required of k t  foad step, t h i  i n i t i a l  stress matrix,  the  tangent 
material   st iffness and the  total  nodal load a f t e r  R increments. For the   s t ra i -  
g h t  INR approach, [ K t ]  i s  continuously  reformed and inverted. This is  obvious- 
ly  quite  expensive. In this context,  the  following  versions  of  the INR a1 gor i -  
t h m  can be established  for a specific  load  increment  solution  cycle, namely: 

R 

i )   S t r a i g h t  INR w i t h  constant  reformation  of  tangent  stiffness  matrix 
during  i teration; 

i i )   I n t e rmi t t en t  global  reformation  during  iteration; 

i i i )   Preferent ia l   local   reformation  during  i terat ion;  

i v )  BFGS type [3] reformation  during  iteration; 

v )  Classical  modified INR procedure  wherein s t i f fnes s  is  reformed only 
a t  beginning  of  load step; 

v i )  No reformation, just  i t e ra t ion ;  

v i i )  Reformation with no i t e r a t ion ,   e t c .  

As will be seen later,   various  versions of  the foregoing INR family  of  al- 
gori thm are  incorporated i n  the  self-adaptive  strategy. This will  obviously 
lead to  a hierarchy w i t h  varying  degrees o f  computation  power/efficiency. 
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QUALITY/CONVERGENCE/NONLINEARITY TESTS 

The quality/convergence/nonlinearity tests are  the  core  of the m u l t i -  
level  strategy. Such t e s t s   a r e  themselves  organized i n t o  three main cate- 
gories, namely: 

i ) C1 assical norm type convergence t e s t s ;  

i i ) Qual i t y  of convergence t e s t s  and; 

i i i )  Degree of  nonlinearity  tests. 

The f i r s t  group  of tes ts   are   essent ia l ly  of the normed type  pass  or  fail  vari- 
ety  as  typified by: 

a )  The out  of  balance norm t e s t ;  

b )  The global  displacement norm t e s t ;  

The main intent  of such t e s t s   i s   e s sen t i a l ly  t o  monitor  the  success o r  fa i lure  
of the  iterative  process. Note, while such tes t s   a re   e f f ic ien t  and well adap- 
ted t o  th i s  purpose,  they  cannot be used effectively t o  forecast  potential 
d i f f icu l t ies   un t i l  o u t r i g h t  failure  occurs. 

In this  context,  what i s  required  are  so-called  quality checks which en- 
able a constant moni tor ing  of  the  solution so as t o  determine  whether  the  direc- 
tion of convergence i s  proper.  This i s  the purpose  of the second stage of 
checking. Namely, the  quality checks t e s t  whether the  i terat ive process pos- 
sesses  the  requisite:  rate;  monotonicity;  positive,  negative and  semi definite- 
ness: e t c .  Once determined, such information i s  used t o  trigger  the  various 
modifications of the  primative f i r s t   l e v e l  IMNR strategy. 

Since the paper i s  mainly  concerned w i t h  s t a t i c  loading  problems,  various 
statements  concerning  the  quality  of  solution convergence can be  made a t  the 
outset. For instance,  since most s t a t i c  loading i s  applied  in a monotone fash- 
ion, i t  i s  expected t h a t  unless  there i s  overshoot,  successive  iterated 
solutions should behave as a monotone, positive,  negative  or semi definite  se- 
quence.  Behavior to  the  contrary  obviously  represents  either  overshoot  or po- 
tential  divergence. 

Since i t  is  difficult  to  ascertain  the  monotonicity and  definiteness 
from e i the r  of the normed or  vectorial  versions  of  the nodal displacements and 
forces ,   a l ternat ive  f ie ld  measures must be employed. In this   direct ion,  the 
1 oca1 (element) and global s t r a in  energy  stored can serve i n  such a capacity. 
This follows from the f ac t  t h a t  fo r  monotone loading  situations,  successive 
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i terations  lead  to a monotone posit ive  definite sequence o f  energy i t e r a t e s  
for  softening  structure. In the  case of hardening s i tuat ions,   successive  i te-  
ra tes  may  be nonmonotone f o r   a t   l e a s t   t h e  f i rs t  two iterates.   Thereafter,   the 
energy i te ra tes  tend t o  be  monotone  and negative  definite.  This process is  
c lear ly  seen by the normed analogy  of  the i t e r a t ive  process  depicted i n  Figures 
1 and 2. 

The incremental i t e r a t e  energy  stored d u r i n g  a given  iteration  step is 
essentially  the shaded area  i l lustrated i n  Figure 1 .  Realizing t h a t  the or- 
dinate  values o f  the  true  solution  curve  are given by (1 ) , i t  fo l l  ows that   the  
incremental  energy  stored d u r i n g  the k t h  i t e ra t ion   s tep  o f  the Rth load  incre- 
ment can be approximated by the  following  inner  product, t h a t  i s  

Assuming tha t  a to ta l  o f  KR i teration  steps  are  associated w i t h  the Rth  load-  
step,  then  the  following  expression can be developed for the  energy  stored, 
namely: 

R K -1 

k=l ' k = l  (!k + !k+l) '!k+l 

R K -1 
E = C E:= R T R  

Note ( 1 2 )  i s   e s sen t i a l ly  a trapezoidal  type  integration a proximation for 
the  area under the hyper-curve defining  the  solution of  the RtR loadstep. Now, 
sumning ( 1 2 )  over the  ent i re   set  of L loadsteps  associated w i t h  a given problem 
yields  the  requisite  overall   strain energy  stored,namely: 

= 1  c ""I R R T R 
R=l k = l  (!k + !k+l) '!k+l (13) 

To obtain  the  strain  energies  for  say the eth  element, (13) must be inter-  
preted from a local  point of view. Namely, the  requisite  parti t ions of Fke 
and Ayke must be employed i n  a partitioned  version of (1  3 )  , tha t  i s  

- 

where here AYRe and _Fie, are  respectively  the  local and element nodal displace- - 
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ments  and forces. Note, due t o  the form of (14) ,  any  form of tangent  stiffness 
type of consti tutive law can be accomodated. 

In terms of the  iteration  process  associated w i t h  softening media, i t   f o l -  
lows t h a t  fo r  convergent s i tuat ions 

t h a t  i s ,   successive  i terates   are  monotone and posit ive  definite.  Hence, for  
softening media, a check of successive  iterates  for monotone decreasing pos i -  
t ive  definiteness  will   establish a measure of  the  quality of convergence. For 
the hardening  case , the E; sequence associated w i t h  the  convergent  solution 
process  takes  the form: 

E < E <.. .< E k  < ... < O < E  R R  R R 
2 3 1 

As can be seen, f o r  k>l,  the sequence Ek i s  monotone increasing b u t  negative R 

def ini te .  In this  context,   similar t o  the  softening  case, a check of the mono- 
tone  increasing  negative  definiteness of successive  i terates  is  used as one of 
the measures of the  quality of convergence. 

A l a s t  b u t  very  important way of predicting  potential  solution  difficul- 
t i e s  can be achieved by  moni toring  the  degree of nonl ineari  ty  excited  as  the 
deformation  process  continues.  This can  be achieved by selectively checking 
the changes  of curvature  of  the  global and local  strain energy space. Such 
behavior can  be ascertained  using  difference  operators t o  evaluate  either  the 
slope,  rate of change of  slope, o r  more elaborately,  the  radius of curvature of  
the  energy  space  as e i ther  a function of the  loading  parameter  or  the nodal 
displacements. An a1 ternative approach would  be t o  locally spl  ine f i t  the ene- 
rgy-loading  parameter  space. In t h i s  way, the  current  curvature/slope can be 
obtained  either on a 1 oca1 el ement o r  global  basis. Such information can be 
used t o  i n i t i a t e  changes i n  load step  size  as we1 1 as t o  control  local and  
global stiffness  reformation. 

The importance  of  such t e s t s  follows from the f ac t  t h a t  a1 t h o u g h  FE simu- 
lations of structures composed of general media undergoing large  deflections 
are  inherently  nonlinear,  the  degree of nonlinearity  excited  varies from p o i n t  
t o  p o i n t  as well as  from load  increment t o  load  increment. As i t  i s  possible 
t h a t  large por t ions  of the  structure may exhibit  basically  linear  behavior, 
many general purpose  codes a1 low the  user t o  p a r t i t i o n  the  overall  structure 
i n t o  i t s   l i n e a r  and nonlinear groups.  A1 though this   cer ta inly adds to  the  ef- 
ficiency  of  the  code,  generally such information i s  n o t  known a priori  unless 
extensive  parametric  studies have already been performed. In this  context,  the 
nonlinearity check will  enable  the  automatic  partitioning  of  the  structure by 
allowing for  preferential  reformation of the  tangent  stiffness depending on the 
amount of  local nonl ineari  ty  excited. 
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ADAPTIVE STRATEGY 

In the  context  of  the  inherent  features o f  the INR family  of  algorithms, 
the  adaptive  strategy  incorporates  the  following  procedural  options namely: 

i )  Tangent stiffness  reformation  and; 

i i )  Load increment  adjustment. 

Each of  these  options  in turn involves  several  different  levels. For instance, 
stiffness  reformation can be considered i n  several  stages, t h a t  i s :  

i )  Global reformation; 

i i )  Preferential  local  reformation or; 

i i i )  BFGS [3] reformation. 

The adaptive  incremental  load can also be achieved  in  several ways namely: 

i ) Increment  expansion; 

i i )  Increment contraction o r ;  

i i i )  Corrective  incrementation. 

As noted ear l ie r ,   the   in i t ia t ion  of  e i the r  o p t i o n  i s  dependent on three  basic 
c r i t e r i a ,  t h a t  i s :  

a )  Qual i ty  of convergence; 

b )  Outright  failure  to converge o r ;  

c )  The degree of nonl i neari  ty  excited. 

While the  reformation o p t i o n  is   t r iggered by the second level  tests,   the 
specific  adaption  triggered  is  primarily dependent on the  degree of nonlinear- 
i ty  excited.  Hence, for  mildly  nonlinear  (elastic)  si tuations,   the BFGS refor- 
mation process i s  employed. In the  case where significant  local o r  global non- 
l inear i ty  i s  excited,  then  either  global o r  preferential  reformation  is  ini- 
t ia ted.  

As can be seen from the  proceeding categories,  various  types of load 
crementation  are  possible. The overall strategy i s  a combination of such 

i n -  

options.  Specifically, when significant  solution  degradation  is  monitored by 
the  level two t e s t s ,  then  corrective  incrementation i s   i n i t i a t ed .  Namely, ne- 
gative load  incrementation i s  employed t o  enable  the  retracing  of a portion of 
load history wherein a lower order  algorithmic  strategy  yielded  poorly conver- 
ged resul  ts. 

To s t r ike  a balance between solution convergence and  economy, the  overall 
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adaptive  strategy i s  centered a b o u t  a primative  version of the INR algorithm 
namely the IMNR. Depending on the  results  of  the qual ity/convergence/nonl  inea- 
r i ty   tes ts ,   the   level  of the IMNR is  e i ther  upgraded o r  lowered by modifying 
the  pattern  of  stiffness  reformation and incrementation. Note, since  the main 
incentive is t o  achieve a successful  solution a t  least   cost ,   the   hierarchy  is  
ordered t o   f i r s t  implement increment  adjustment and then  reformation. As a 
further move to  achieve economy, the  global  reformation  process  typically em- 
ployed a t  t he   s t a r t  of an IMNR increment can be established  preferentially de- 
pending on the  curvature  tolerance  associated  with  the  global and local non- 
1 ineari  ty  checks. 

Since  space is  limited, a full   description of the  various  detailed  hier- 
achies must be lef t   to   future   publ icat ions.  In this context,  for  the  present 
purposes,  Figure 3 gives a good overview  of all  the  possible  flows o f  control 
associated  with  the  three-level  strategy. As can be seen from this   f igure,  
contingent upon the  various  "flags"  generated in the  level two tes ts ,   the  con- 
dition code check routine  will  initiate  the  actual  modification of the INR 
strategy a l o n g  the  lines  outlined i n  the proceeding discussion. 

DISCUSSION 

Interestingly,  while such factors  as geometry, material  properties, 
boundary condi t ions,   e tc . ,   a l l  have some ef fec t  on the  choice of load  incre- 
ment s ize ,  once an excessive  value has been chosen, typically  similar  types 
of  solution  degradation  are  encountered when only  the  primative  non-self-adap- 
tive  algorithm i s  used.  Specifically,  three  basic  types of solution  pathology 
tend t o  occur. These can  be categorized by: 

i )  Immediate  and strong nonmonotonicity; 

i i )  Moderate b u t  progressively  increasing nonmonotonicity and  non- 
positive  definiteness and; 

i i i )  Mild monotonicity  with e i ther  very  gradual increases o r  decreases 
i n  solution  oscil lation. 

Note, such behavior can be excited  either  in  the  f irst  o r  successive  load  steps. 
Figures 4 and 5 give examples of such behavior. While the  resul ts   i l lust rated 
pertain t o  a rubber  sheet,  similar  results were obtained  for   e las t ic /plast ic  
media as  well as  for  different  geometries and boundary conditions. 

The solution  failure  depicted i n  Figure 5 is   typical of  those  that  usually 
arise.   Specifically,   as can be seen,  for  the given load  increment  excellent 
convergence is obtained i n  t he   f i r s t   s t ep .  In the  second, a mild form of non- 
monotonicity and nonpositive  definiteness  is  encountered.  Finally, i n  the 
t h i r d  step,  strong and progressively  increasing  nonpositive  definiteness  is 
encountered.  Solution  failure i s   f i n a l l y   i n i t i a t e d  by out  of  balance  loads. 
T h i s  scenario  is   typical of excessive  load  incrementation. Note, a s  can be 
seen from these  results;  the  onset o f  such behavior i s  signalled by the i n i -  
t i a t ion  of nonmonotonicity or  incorrect  definiteness. By studying  the  behavior 
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of  local  element  energies,  additional  insights  are  obtained. For the problems 
illustrated  in  Figures 4 and 5 ,  the  solution  degradation is  in i t ia l ly   loca-  
l ized b u t  gradually  spreads  to  the  entire  structure  as  the  iteration  process 
continues. Employing the  self-adaptive  strategy  to  the  foregoing problems 
caused the second level  monotonicity t e s t s  t o  trigger  automatic  increment ad- 
justment and preferential  stiffness  reformation. T h i s  led t o  the  generation 
of the  correct  solution. The overall  strategy was tested on several  nonlinear 
problems which exhibited  pathological  behavior  for given  load  increment  choices. 
The types o f  problems considered combined varying  degrees o f  kinematic,  kinetic 
and material  nonlinearity. In each case  barring  possible  bifurcations,  the 
level two t e s t s  were able  to  automatically  initiate  the  requisite  corrective 
self  adaptions t o  enable  successful  solutions. The .main problem encountered 
with the  concept  of  self-adaptive  strategies  arises from the  fact t h a t  some 
engineering  insight must be practiced  in  order  to  cut down overall running 
times.  Otherwise,  excessive  execution  times  are  encountered a s  the  adaptive 
strategy  shifts   gears t o  adjust for improper incrementation. 
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Figure 3.- Overall flow o f  control of three-level  self-adaptive  strategy. 
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OUT OF BALANCE 

Figure 5.- Global energy  incremer,t o f  rubber  sheet 
( l s t ,  Znd, 3rd load s teps) .  
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SUMMARY 

A  method  for  the  reduction  of  the  cost  of  solution of large  nonlinear 
structural  equations  was  developed.  Verification  was  made  using  the  ITARC-STRUC 
structure  finite  element  program  with  test  cases  involving  single  and  multiple 
degrees-of-freedom  for  static  geometric  nonlinearities. The method  developed 
was  designed  to  exist  within  the  envelope  of  accuracy  and  convergence  charac- 
teristic  of  the  particular  finite  element  methodology  used. 

INTRODUCTION 

At  present  the  finite  element  codes  in  conjunction  with  the  large,  high- 
speed  computers  available  are  capable of producing  reasonable  solutions  to 
practically  all  static  problems  conceivable  in  structural  analysis.  In  addi- 
tion,  well-behaved  problems  such  as  those  involving  small  elastic  deformations 
are  solved  relatively  inexpensively  and  accurately.  Computational  difficulties 
do  not  arise  until  the  stiffness  of  the  structure  becomes  a  function  of  dis- 
placement  and/or  displacement  history. An opinion  widely  held  is  that  when 
this  does  occur  an  implicit  solution  scheme  is  necessary  for  accuracy. All 
implicit  schemes  require  an  iterative  solution  where  there  is  an  attempt  to 
reduce  some  error  term  to  zero  at  each  iteration.  Therefore,  a  nonlinear 
problem  is  more  expensive  to  solve  and  can  become  astronomically so depending 
upon  the  degree  of  nonlinearity  and  the  convergence  criteria  used. 

In the  solution of nonlinear  structural  equations  the  reformulation  of 
the  stiffness  matrix  is  a  first  order  contribution  to  the  cost. The  first 
logical  step in attempting  to  reduce  the  cost  would  be  to  seek  a  less  expen- 
sive  way  to  update  the  stiffness  matrix.  This  of  course  has  been  done  with 
some  success  and  i9.appare.ntl.y  still  being  researched.  Looking  at  only  the 
most  recent  developments  or  evaluations we  see  that  Mondkar  and  Powell [l] 
have  used  the  constant  alpha  technique  to  try  updating  the  stiffness  matrix 
for  the  modified  Newton-Raphson  approach.  Matthies  and  Strang [2,,3] 
have  taken  similar  approaches born from  a  paper  by  Dennis  and  More [ 4 ]  on 
Quasi-Newton  methods. The basic  premise  was  that  the  stiffness  matrix  could 
be  updated  without  going  through  the  full  process  of  reformulation  and  de- 
composition  or  inversion.  The  most  popular  approach  was  to  update  the  stiff- 
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ness  matrix by a mat r ix   o f   rank  two. Th i s  is  known as t h e  BFGS (Broyden- 
Fletcher-Goldfarb-Shanno) u p d a t e .   C r i s f i e l d  [5] used a method similar t o  a 
BFGS update  of  rank  one.  A l l  of t hese   pape r s  show conclus ive   ev idence  of c o s t  
r e d u c t i o n   f o r   c e r t a i n   p r o b l e m s .  The las t  by C r i s f i e l d  is  c l o s e s t   i n   f o r m   t o  
t h e  method  developed  here. 

A s e c o n d   l o g i c a l   s t e p  is  t o   r e d u c e   t h e  number of i t e r a t i o n s   r e q u i r e d   t o  
s a t i s f y   t h e   c o n v e r g e n c e  cri teria.  This  can  be  done  by  determining  an  estimated 
displacement  as a c c u r a t e l y  as p o s s i b l e .  The development  which  follows shows 
how t o  do t h i s .  A l l  f o r c e s  and loads  are of   an   incrementa l   na ture .  

DEVELOPMENT 

I n   g e n e r a l ,   t h e   i t e r a t i v e   m e t h o d s  of s o l u t i o n   u s i n g   t h e   s t i f f n e s s   f o r m u l a -  
t i o n  w i l l  by some l o g i c a l  means c a l c u l a t e  a gene ra l i zed   d i sp l acemen t   fo r  a 
g iven   gene ra l i zed   l oad .   Re tu rn ing   t hen   t o   t he   e l emen ta l   l eve l ,   t he   e l emen ta l  
s t i f f n e s s  matrices are a l t e r e d   t o   r e f l e c t   t h i s   c h a n g e   i n   s h a p e  and t h e   t o t a l  
r e s i s t a n c e  of t h e   s t r u c t u r e   t o   t h e   a p p l i e d   l o a d  i s  d e t e r m i n e d .   I f   t h e   s t r u c -  
t u r e  i s  to   be   cons ide red   i n   equ i l ib r ium,   t he   app l i ed   l oad   mus t   be   exac t ly  
balanced by t h e   r e s u l t i n g   r e s i s t a n c e  of t h e   s t r u c t u r e .  Any imbalance i s  termed 
a r e s i d u a l   f o r c e  and  must  be  considered as a n   e r r o r .  An a t t e m p t  i s  made t o  
r e d u c e   t h i s   e r r o r  by a l t e r i n g   t h e   e s t i m a t e d   d i s p l a c e m e n t .  The r a t e  of conver- 
gence  depends  on  the  manner   of   es t imated  displacement   select ion.  

The v a s t   m a j o r i t y  of i m p l i c i t   s c h e m e s   a v a i l a b l e   u t i l i z e   o n l y   t h e   m o s t  
r ecen t   r e s idua l   and   t he reby   i gnore   any   poss ib l e   t r end   de t e rmina t ion .   Fe l ippa  
[ 6 ]  recognized   th i s   and   proposed  a v i a b l e  method f o r   d e t e r m i n i n g   t h e   d i s p l a c e -  
ment t h a t  would y i e l d   t h e  least r e s i d u a l   w i t h i n   s p e c i f i e d   l i m i t a t i o n s .   T h i s  
approach   requi red   the   de te rmina t ion   of  a w e i g h t i n g   m a t r i x   t h a t  w a s  dependent 
upon the  e lements   chosen  and  the  appl ied  loads.  The  development i n   t h i s  pape r  
is independent of t h e   p h y s i c a l   c h a r a c t e r i s t i c s  of the   e lements .  

A key  element i n   t h e   s u c c e s s  of the  approach  developed i s  t h e   f i n i t e  
element  method  used. A s  ment ioned   before   the  MARC-STRUC s t ruc tu re   p rog ram was 
u s e d   b u t   t h e   v a r i a t i o n a l   f o r m u l a t i o n  of t h e   s t r u c t u r a l   e q u a t i o n s  w a s  performed 
a c c o r d i n g   t o   t h e  method  of  Jones [7 ] .  It i s  most  important  to  have  the  most 
a c c u r a t e  method p o s s i b l e   f o r   t h e   d e t e r m i n a t i o n  of t h e   r e s i d u a l s .  

Cons ide r ing   t he   so lu t ion   fo rm,   i n   F igu re  1 a graph of f o r c e   v e r s u s   d i s -  
placement is  shown.  The c u r v e   r e p r e s e n t s   t h e   c a l c u l a t e d   r e s i s t a n c e  of t h e  
s t r u c t u r e .  The o r i g i n a l   s t i f f n e s s   m a t r i x ,  Roy a s s u m e s   l i n e a r l y  e las t ic  de fo r -  
mat ion   and   y ie lds   the   d i sp lacement ,   uo ,  and t h e   r e s i d u a l ,  Ro, f o r   t h e   a p p l i e d  
load , F. The displacement  , uo , and r e s i d u a l ,  Ro ,-are t h e n   u s e d   i n  a Quasi- 
Newton f a s h i o n   t o   u p d a t e   t h e   s t i f f n e s s   m a t r i x   t o  K 1  and a new disp lacement ,  i1, 
and  consequently a new r e s i d u a l ,  R i ,  are ca lcu la ted .   Highly   accura te   answers  
may r e s u l t ,   b u t   t h e y  are c l e a r l y   e x p e n s i v e   t o   o b t a i n .  

- - 
- - 

- 

The e x t r a p o l a t i o n  method  presented i n   t h i s   p a p e r  i s  c l e a r l y   e x e m p l i f i e d  
by t h e   t r i a n g l e ,  ACE, shown i n   F i g u r e  2. The  method  used w a s  i d e n t i c a l   t o   t h e  
d i r e c t   i t e r a t i o n  method  (shown i n   F i g u r e  1 e a r l i e r )  up t o  and  through  the 
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c a l c u l a t i o n  of  uo, R, and  ul, R1. It w a s  t he   de t e rmina t ion   o f   t he  new esti- 
mated  displacement, 9 ,  t h a t  w a s  p e r f o r m e d   d i f f e r e n t l y .   I n  a one  dimensional 
s e n s e   t h e   r e s i d u a l s  Roy K 1  and  the  dis tance  between  them, a, were u s e d   t o  
c a l c u l a t e  a scalar, w, t h a t   p r e d i c t e d   t h e   d i s p l a c e m e n t  a t  which  equi l ibr ium 
supposed ly   ex i s t ed   unde r   t he   l oad ,  F. Of c o u r s e ,   t h i s  w a s  n o t   t h e   e q u i l i b r i u m  
p o s i t i o n  and a new r e s i d u a l ,  _R2,-was determined. The r e s i d u a l s ,  El, E2 , and 
the  dis tance  between  them, wd - d , were t h e n   u s e d   t o   p r e d i c t  a new equ i l ib r ium 
p o s i t i o n .  The p rocess   con t inued   un t i l   conve rgence  w a s  s a t i s f i e d .  

- -  " 
- 

- 
- 

A major   d i f f i cu l ty   encoun te red  w a s  t he   de t e rmina t ion  of t h e  scalar, W. 
I n  a one  dimensional   case it w a s  easy  enough  to  see t h a t  

However, s i n c e   i n   g e n e r a l   t h e   v e c t o r s  Eo, El and d are h e t e r o g e n e o u s   i n   t h e i r  
components '   uni ts ,  a d i v i s i o n  as mentioned  above i s  impossible   even when u s i n g  
vec to r   l eng ths .  The s o l u t i o n   t o   t h i s   d i f f i c u l t y  came about  by c o n s i d e r i n g   t h e  
u n i t s  of  work. I n   f a c t ,   t h i s   e x t r a p o l a t i o n   p r o c e s s  may be   symbol ica l ly   thought  
of as minimizing  the work  done  by t h e   r e s i d u a l s .   I n   t h i s   l i g h t  i t  w a s  t hen  
dec ided   t ha t   equa t ing   t he  area of t h e   t r a p e z o i d ,  ABDE, p l u s   t h e  area of t h e  
t r i a n g l e ,  BCD, t o   t h e  area of t h e   t r i a n g l e ,  ACE, would r e s u l t   i n   a n   e q u a t i o n  
with  only  one unknown. Simplifying  and  rearranging,   the   fol lowing w a s  
ob ta ined  . 

- - 
Ro d 

w =  - 
(Eo-R1) d 

A t  t h i s   p o i n t  i t  w a s  decided  to   implement   the  theory  and test  f o r  a one  degree- 
of-freedom  case  and  fol low  that   wi th  a more  complex case .  

VERIFICATION 

I n   a n  a t t e m p t  t o   d e t e r m i n e   t h e   v a l i d i t y  of the   a forement ioned   ex t rapola-  
t i o n  method i t  w a s  de t e rmined   t ha t  a one  dimensional  buckling  problem  would  be 
a p p r o p r i a t e  as a f i r s t  t es t  case. The bar-spring  problem of Jones  w a s  
s e l e c t e d .  

Bar-Spring  Problem 

I n   F i g u r e  3 the  dimensions  used  on  the  problem may c l e a r l y   b e   s e e n .  The 
l e n g t h  of t h e   s p r i n g  w a s  unimportant  as long as n o n l i n e a r   e f f e c t s   d i d   n o t   e n t e r  
t h e   c a l c u l a t i o n s   f o r   t h e   s p r i n g ' s   d e f l e c t i o n .  The b a r  w a s  modeled s o  as t o  
a l low  only  a change i n   l e n g t h  and  no  bending  deformation,  hence  the  absence of 
an E 1  t e r m .  A load  w a s  a p p l i e d  a t  t h e  end  of t h e   b a r  and s p r i n g   i n   t h e   d i r e c -  
t i o n  of de fo rma t ion   t o   r ende r   t he   p rob lem  one  of a pu re ly   s ing le   d imens iona l  
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case. The buck l ing   l oad  was a t  2.7 kg. ( 6  l b . )   w i t h   t h e   r e s u l t s   t a b u l a r i z e d  
i n   T a b l e  I. The exact deformat ion  w a s  c a l c u l a t e d   a n d   p l o t t e d   i n   F i g u r e  4 t o  
show t h e   h i g h   d e g r e e  of nonl inear i ty   o f   the   p roblem.  

I n   a n a l y z i n g   t h e   r e s u l t s  (see Table I) i t  w a s  d e c i d e d   t h a t  a comparison  of 
the v a l u e s   c a l c u l a t e d   a g a i n s t   t h e  exact v a l u e s  as w e l l  as a comparison  of  the 
number of i t e r a t i o n s   r e q u i r e d   f o r   e a c h  method  would  be  of  use. The r a i s e d  
numbers b e s i d e   t h e   c a l c u l a t e d   d i s p l a c e m e n t s   i n   T a b l e  I r e p r e s e n t   t h e  number  of 
i t e r a t i o n s   r e q u i r e d   a b o v e   t h e   o r i g i n a l  estimate t o   r e d u c e   t h e   q u o t i e n t  of t h e  
ca l cu la t ed   d i sp l acemen t   and   t he   e s t ima ted   d i sp l acemen t   t o   t he   t o l e rance   i nd i -  
ca t ed  a t  t h e  column  heading. 

It shou ld   be   no ted   t ha t  a t  t h e   b u c k l i n g   l o a d   t h e   t o l e r a n c e   r e q u i r e d   t o  
o b t a i n  two s i g n i f i c a n t   d i g i t s   a c c u r a c y ,   1 . 0 0 1 ,   l e d   t o  a 5 v s .  26 advan tage   i n  
i t e r a t i o n s   f o r   t h e  new method.  However, t h e  new method w a s  edged  by t h e   o l d  
in   the   pos t -buckled   reg ion   by  a c o n s i s t e n t  4 v s .  7 margin .   The   reason   for   th i s  
w a s  a p p a r e n t l y   t h a t   t h e   l i n e a r   e x t r a p o l a t i o n   d i d   n o t   f o l l o w   t h e   c h a n g i n g   s t i f f -  
nes s  of t h e   s t r u c t u r e   v e r y  w e l l .  I f  so ,  a b e t t e r   a p p r o x i m a t i o n  would  be 
obta ined   wi th  a p a r a b o l i c   e x t r a p o l a t i o n .  

On t h e   w h o l e   t h i s   e x t r a p o l a t i o n  showed promise i n   t h i s   c a s e   b u t   n o t  of a 
c l e a r l y   d e c i s i v e   n a t u r e .   T h e r e f o r e ,   t h e   m o t i v a t i o n   f o r  a more  complex  example 
was e s t a b l i s h e d .  

Ring  Buckling  Problem 

This  problem w a s  t o   d e t e r m i n e   t h e   d e f l e c t i o n   o f  a r ing   unde r  a uniformly 
l o a d e d   e x t e r n a l   p r e s s u r e  of v a r y i n g   v a l u e s .  The r i n g  w a s  modeled  through 90 
degrees  as shown i n   F i g u r e  5. The 90 degree   a r ch  w a s  b roken   i n to  two subs t ruc -  
t u r e .  The degrees  of  freedom  per  node were 

1. z 
2 .  R 
3 .  dZ/ds 
4 .  dR/ds 

w i t h   t h e   r o t a t i o n s   p o s i t i v e  as  shown by 0 i n   F i g u r e  5. The r i n g  was modeled 
w i t h  a modulus  of e l a s t i c i t y  of 2 . 1  x l o 6  kg/cm2 ( 3 0  x 106  psi)   and a r a d i u s  
of 51 cm ( 2 0   i n . ) .   F i n a l l y ,  a k i c k e r   f o r c e  w a s  a p p l i e d  a t  node 1 of subs t ruc -  
t u r e  1 i n   t h e   n e g a t i v e  R d i r e c t i o n   w i t h  a magnitude  of 1 .5  x kg. (3 .4  x 
10-6 l b )  . Obvious ly ,   th i s  w a s  s i m p l y   t o   f o r c e   t h e   r i n g   i n t o  a buckled mode 
w i t h o u t   a l t e r i n g   t h e   d e f l e c t i o n s   d u e   t o   t h e   p r e s s u r e   l o a d i n g .  

As t h e r e  w a s  no e x a c t   s o l u t i o n   o t h e r   t h a n   t h e  known c o l l a p s e   l o a d ,   t h e  
tolerance  chosen,   1 .001,  w a s  t h a t  which  gave two s i g n i f i c a n t   d i g i t s   a c c u r a c y  
for   the   bar -spr ing   problem.  The r e su l t s  obta ined  are shown i n   T a b l e  11. The 
p o i n t  a t  which. t h e   s t r u c t u r e  would  "collapse" w a s  4.22  kg/cm2  (60 p s i ) .  A s  can 
b e   s e e n ,   t h e   r e s u l t s  were qui te   remarkable  as t h e   s t r u c t u r e  became s o f t e r .  A t  
4.18 kg/cm2 (59.5 p s i )   t h e  number  of i t e r a t i o n s   r e a c h e d  by t h e   o l d  method were 
n o t   e n o u g h   y e t   t o   s a t i s f y   t h e   t o l e r a n c e   r e q u i r e m e n t  o f  1.001.  The  authors 
s u s p e c t   t h a t   a n o t h e r  50 t o  100 i t e r a t i o n s  would  have  been  required.  
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CONCLUDING 

t h i s   p a p e r  

REMARKS 

w a s  t h e   c o s t  of s o l u t i o n   o f   l a r g e  
n o n l i n e a r   s t r u c t u r a l   e q u a t i o n s .   T h i s   d i f f i c u l t y   h a s   b e e n  and i s  be ing  
r e sea rched ;   however ,   t he   d i r ec t ion  of most   p resent   research  i s  a p p a r e n t l y  con- 
c e r n e d   w i t h   t h e   s e c o n d   p a r t i a l  of t h e   s t r a i n   e n e r g y   e x p r e s s i o n   ( s t i f f n e s s  
matr ix) .   This   paper   implies   and  subsequent   research by t h e   a u t h o r s   s u p p o r t s  
t h e   s u p p o s i t i o n   t h a t   t h e   f i r s t   p a r t i a l  of t h e   s t r a i n   e n e r g y   e x p r e s s i o n   ( r e s i s t -  
i n g   f o r c e )  i s  n o t   b e i n g   f u l l y   u t i l i z e d   i n   t h e   d e t e r m i n a t i o n  of t h e  new esti- 
mated  displacement  needed f o r  impl ic i t   methods .  It may w e l l  b e   d e t e r m i n e d   t h a t  
updat ing   and/or   re formula t ion  of t h e   s t i f f n e s s   m a t r i x  is  o c c u r r i n g   f a r   t o o  
o f t e n   i n   p r e s e n t   s o l u t i o n   t e c h n i q u e s .  
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TABLE 1 

BAR-SPRING PROBLEM 

Load 

( lb )  Method ( 4  1.1 1.01  1.001  1.0001  1.00001 
kg Exact 

1.4 Old 0.59781 0.5915; 0. 59643 0.59785 4 0. 59786 €I 0.59787 7 

(3.0 New 0.5915  0.5964  0.5978  0.5978  0.5978 

2.7 Old 2.5400 2.01772  2.45454 l3 2.53205 2. 53926 39 2.54006 
(6.0) New 2.2329  2.5018  2.5373  2.5400  2.5400 

4.1 Old 4.4821 4 .  49331 4.48061 4.48211 
(9.0) New 4.4788  4.4816  4.4821 4 .4821 4.4821 

4 

26 51 

1 4 .  48211  4.48213. 1 

5.4 Old 5.0800  5. 07923 5.08005  5.08007  5. 08008 5.08009 5 

(12.0) New 5.0828  5.0803  5.0800  5.0800  5.0800 
~~ 

6.8 Old 5.4907 5. 49431 5.49075  5.49077 5. 49079 5.490710 4 6 

(15.0) New 5.4948  5.4910 5.4907  5.4907  5.4907 

8.2 Old 5.8143 5. 81761 5.81465  5.81437 5. 81439 5.814311 
4 7 

(18.0) New 5.8176  5.8148  5.8146  5.8143 5.8143 

*Buckling Load 

Note: When the  number of i t e r a t i o n s  is  less than  (2) ,   there  i s  NO di f fe rence  between t h e  new 
and old methods. 



TABLE I1 

RING PROBLEM (1,001) 

Load  Substructure 1 (cm) Substructure 2 (cm) 
kg 1 cm2  Node 1 Node 1 
(psi) Method  Iterations D.O.F. 2 D.O.F. 2 

.5  Old 
( 7 )  New 

2 
4 

- .78547 E-03 -.41397  E-03 
-.78555  E-03 -.41397  E-03 

1 .5  Old 5 -.25537 E-02 - . l o 4 6 8  E-02 
( 2 1 )  New 4 - .25545 E-02 - . l o 4 5 9  E-02 

2 . 5  Old 9 - .49439 E-02 - . l o 6 0 7  E-02 
( 3 5 )  New 4 - .49472  E-02  - . lo576 E-02 

3 . 5  Old 23   - . lo230  E-01  .18 1 7  2 E-02 
( 4 9 )  New 3 - . lo237  E-01  , 1 8 2 4 3  E-G2 

3 . 9  Old 5 4  
( 5 6 )  New 3 

~~ ~~ 

- . 22451  E-01 .12827  E-01 
-.22597  E-01 .12972  E-01 

4 . 2  Old 149* -. 88354  E-01,k . 77978  E-Ol* 
(59 .5 )  New 4 -.95669  E-01 .85268  E-01 

*Maximum  number of iterations  allowed. 
Convergence  not  yet  satisfied. 
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Figure  1.- D i r e c t   i t e r a t i o n  method. 
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Figure  2.- D i r e c t   i t e r a t i o n  method  with 
e x t r a p o l a t i o n   m o d i f i c a t i o n .  
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Figure  3.  - Bar-spring  problem. 
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Figure  4.- E x a c t   s o l u t i o n  t o  bar-spr ing  problem. 
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Figure 5.- Ring problem. 
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RESPONSE  OF  NONLINEAR  PANELS TO RANDOM LOADS* 

Chuh  Mei 
Old  Dominion  University 

SUMMARY 

Lightweight  aircraft  structures  exposed  to  a  high  intensity  noise  environ- 
ment  can  fatigue  fail  prematurely  if  adequate  consideration is not  given  to  the 
problem.  Design  methods  and  design  criteria  for  sonic  fatigue  prevention  have 
been  developed  based on analytical  and  experimental  techniques.  Most of the 
analytical  work  was  based  upon  small  deflection  or  linear  structural  theory 
which  did  not  agree  with  the  experimental  results.  A  large  deflection  geomet- 
rical nonlinearity  was  incorporated  into  the  analysis  methods for  determining 
the  structural  response  to  high  intensity  noise.  The  Karman-Herrmann  large 
deflection  equations  with  a  single-mode  Galerkin  approximation,  and  the  method 
of  equivalent  linearization  were  used  to  predict  mean-square  amplitude,  mean- 
square  stresses,  and  nonlinear  frequency  at  various  acoustic  loadings  for 
rectangular  panels.  Both  simply  supported  and  clamped  support  conditions  with 
immovable  or  movable  inplane  edges  are  considered.  Comparisons  with  experimen- 
tal  results  are  presented. 

INTRODUCTION 

Vibrations  caused by acoustic  pressure  can  frequently  disturb  the  operating 
conditions  of  various  instruments  and  systems,  and  sonic  fatigue  failures  which 
occurred  in  aircraft  structural  components  cause  large  maintenance  and  inspec- 
tion  burdens.  The  development  of  sonic  fatigue  data  and  design  techniques  were 
initiated  to  prevent  sonic  fatigue  failures.  Design  methods  and  design  criteria 
for  many  types of aircraft  structures  have  been  developed  under  Air  Force 
sponsorship  and  by  the  industry  in  the  past  twenty  years.  Reference 1 has  a 
complete  list  of  the  reports  describing  these  efforts.  This  research  led  to 
sonic  fatigue  design  criteria  and  design  charts  which  are  widely  used  during 
the  design of an  aircraft.  Although  current  analytical  sonic  fatigue  design 
methods  are  essentially  based on small  deflection 01: linear  structural  theory 
(see  ref. 1, page  209),  many  documented  tests  (refs.  2 - 6) on various  aircraft 
panels  have  indicated  that  high  noise  levels  in  excess  of 110 decibels  (dB) 
produce  nonlinear  behavior  with  large  amplitudes of one  to  two  times  the 

*This  work  was  supported  by  the  Air  Force  Office  of  Scientific  Research  (AFSC), 
United  States  Air  Force,  under  contract  F49620-79-C00169. 
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panel  thickness  in  such  structural  panels.  The  neglect of such  large  deflec- 
tion  geometrical  nonlinearity in analysis  and  design  formulations  has  been 
identified as  one of the  major  causes  for  poor  agreement  between  experimental 
data  and  analytical  results.  The  evidence of those  researchers  was  summarized 
in  reference 7, where  a  comprehensive  review of existing  analytical  methods on 
random  excitations of nonlinear  systems  was  also  given. 

In  this  paper,  the  Karman-Herrmann  large  deflection  equations  for  rectan- 
gular  plates  (ref. 8) are  employed.  Using  a  single-mode Galerkin’s  approxima- 
tion,  the  dynamic  equations  reduce  to  a  nonlinear  differential  equation  with 
time  as  the  indeFendent  variable.  The  method of  equivalent  linearization 
(refs. 9 - 11) is  then  applied  to  reduce  the  nonlinear  equation to an  equivalent 
linear  one.  Mean-square  displacements,  mean-square  stresses,  and  nonlinear 
frequencies at various  acoustic  loadings  are  obtained for rectangular  panels  of 
different  aspect  ratios  and  darnping  factors.  Both  simply  supported  and  clamped 
boundary  conditions  with  immovable  or  movable  inplane  edges  are  considered. 
Comparisons  with  experimental  results  are  also  presented. 

SYMBOLS 

Panel  length  and  width 
Panel  dimension  parameters, 27r/a and 2~/b 
Constants 
Bending  rigidity 
Error of linearization 
Young ’ s modulus 
Equivalent  linear  frequency  in  Hz 
Stress  function 
Panel  thickness 
Frequency  response  function 
Spectrum  level 
Mass  coefficient 
Membrane  stress  resultant 
Constant 
Pressure  loading 
Generalized or  modal  displacement 
Aspect  ratio, a/b 
Spectral  density  function of excitation  pressure  p(t) 
Time 
Displacement  of  midplane 
Transverse  deflection 
Coordinates 
Nonlinearity  coefficient 
Nondimensional  nonlinearity  coefficient 
Ratio  of  damping  to  critical  damping 
Nondimensional  frequency  parameter 
Poisson’s  ratio 
Panel  mass  density 
Normal  and  shear  stresses 



I 

w Radian  frequency 
R Equivalent  linear or nonlinear  radian  frequency 
Subscripts: 
b  Bending 
C Complementary  solution or critical 
m  Membrane 
M X  Maximum 
0 Linear 
P Particular  solution 

FORMULATIOK AND SOLUTION  PROCEDURE 

Governing  Equations 

Assuming  that  the  effect of both  the  inplane  and  rotatory  inertia  forces 
can  be  neglected,  the  dynamic  von  Karman  equations of a  rectangular  isotropic 
plate  undergoing  moderately  large  deflections  are  (refs. 8 ,  12): 

v4F = E (.W2, - 
XY  w'xx  w,yy 1 

where  w  is  the  transverse  deflection of the  plate,  h  is  the  panel  thickness, p 
is  the  mass  density  of  the  panel  material, D = En3/12  (1-V2) is the  flexural 
rigidity, E is  Young's  modulus, V is Poissorr's ratio,  p(t)  is  the  exciting 
pressure,  and  a  comma  preceding a subscript(s)  indicates  partial  differentia- 
tion ( s ) .  The  stress  function  F  is  defined  by 

( 5 =  
X F'YY 

(5 = F, 
Y  xx 

where Ox, Oy, and T are  membrane  stresses. 
X y  

Simply  Supported  Panels.  For  a  rectangular  plate  simply  supported  along 
all  four  edges  as  shown  in  Figure 1, Chu  and  Herrmann  (ref. 81, and  Lin  (ref. 
13)  have  considered  that if the  fundamental  mode  is  predominant,  the  motion of 
the  panel  can be  represented  adequately  as 

w = q  (t)  h  cos (Trx/a) cos (Try/b) (4 1 

where  q(t)  is  a  function of time  only.  The  maximum  value of q(t)  coincides  with 
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t h e  maximum d e f l e c t i o n  wmax d iv ided  by p a n e l   t h i c k n e s s  h. The expres s ion  w 
satisfies the   boundary   condi t ions  for simple s u p p o r t s  

w = w ,  + V W I  = 0, on x = f a/2 

w = w, + v w , ~  = 0,  on y = f b/2 

xx YY 

YY 

S u b s t i t u t i n g   t h e   e x p r e s s i o n   f o r  w i n  Eq. ( 2 )   a n d   s o l v i n g   f o r  a p a r t i c u l a r  
s o l u t i o n  Fp y i e l d s  

where r = a b .  The complementary   so lu t ion   to   eq l ia t ion  ( 2 )  is  t a k e n   i n   t h e  form 

where   the   cons tan ts  Ex and Ny c o n t r i b u t e  t o  t h e  membrane stresses Ox and Oy and 
are to   be  determined  f rom  the  inplane  boundary,   immovable   or   movable ,  
cond i t ions .  

- 

For   t he  immovable edges case, t h e   c o n d i t i o n s   o f   z e r o   i n p l a n e   n o r m a l   d i s -  
placement a t  a l l  four   edges  are s a t i s f i e d   i n   a n   a v e r a g e d  manner as 

- V F , = )  - Ji w ~ , ~ ]  dxdy, on x = f a / 2  

where u and v are  inplane   d i sp lacements .  For the  movable  edges case, the   edges  
are f r e e   t o  move as a r i g i d  body w i t h   t h e   a v e r a g e   i n p l a n e  stress equa l  t o  zero.  
The inp lane   boundary   condi t ions  are 

u = c o n s t a n t  

v = cons tan t  

on x = * a/2 

on y = k b/2 

where Nx and Ny are membrane stress r e s u l t a n t s   p e r   u n i t   l e n g t h   i n  plate.  By 
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making  use  of  these  inplane  edge  boundary  conditions,  equations (8) and (91, it 
easily  can  be  shown  that  for  the  immovable  edges 

- 
Nx - 

- q2h2ElT2 

- q2h2ET2 (1 + vr2) 
8a2 C1-v2) 

N =  tr2 + v) 
8a2 C1-v2) 

and  for  the  movable  edges 
- - 
N x = N  = O  

Y 

the  complete  stress  function  is  then  given  by F = F + Fc. 
P 

With  the  assumed  w  given  by  equation (4) and  stress  function  given  by 
equations (6) and (71, equation (1) is satisfied  by  applying  Galerkin's  method 

L(w,F) w  dxdy = 0 

from  which  yields  the  modal  equation of the  form 

and 

w 2 = x o -  2 D  
0 phb4 r2 

m = 'rr2ph2/16 

B = B  + B c =  (B +Bc)- 
P P phb4 

* * D  

with 



which  satisfies  the  clamped  support  conditions 

w = w, = 0, 
X 

w = w, = 0 ,  
Y 

on x = f a/2 

on y = k b/2 

By introducing  equation (15) in  equation (2) and  solving  it,  the  particular 
stress  function  is 

- q2h2Er2 [cos Ax + - cos  By + - cos  2Ax 1 1 1 F = -  
P 32  r4 16 

+ (1 + r2)z cos Ax cos  By + cos  2  By 2 

16r 

where A = 2T/a  and  B = 21~/b.  The  complementary  stress  function is assumed  as 
the form appearing  in  equation ( -7 ) .  Upon  enforcing  the  inplane  edge  conditions, 
equations (.8) and (:9), it can  be  shown  that  for  the  immovable  edges 

- 3q2h2Er2 
Ny = (r2 + V )  

32  a2 (1-V2) 

and  for  the  movable  edges 
- - 
Nx = "Y = O 

the  complete  stress  function is given  by F = Fp + Fc.  Introducing  these  ex- 
pressions  for w and F in  equation (1) and  applying  Galerkin's  procedure  yields 
the  equation 

;;+w 2 q+Bq3=p(.t) 
0 m 
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where 

2 2 D  
0 

w = A o -  

m = 9 ph2/16 

B = 8, + B, = (8, + Bc) - * * D  

phb4 

and 

p =47p (1-v ) [l + 4 + - l +  
* 2  2 1 1 
P 3  r l6 (1 + r 16r 

+ -  
4 

+ 1 
2 2  + 

2(4 + r ) 2(1 + 4r ) 
2 2  

* 4 
3-m (1 + 2vr2 + r 4 Bc = - 2r 4 

Equation  (13)  represents  the  undamped,  large-amplitude  vibration of a  rectan- 
gular  panel  with  simply  supported or damped  edges, 

The  methods  commonly  used  for  determining  the  damping  coefficient  are  the 
bandwidth  method  in  which  half-power  widths  are  measured at modal  resonances, 
and  the  decay  rate  method in which  the  logarithmic  decrement  of  decaying  modal 
response  traces  is  measured. The  values of damping  ratio 5 range  from 
0.005 to 0.05 for  the  common  type  of  panel  construction  used  in  aircraft 
structures.  Once  the  damping  coefficient  is  determined  from  experiments or 
from  existing  data  of  similar  construction,  the  modal  equation,  equation (13), 
now  reads 

The  method of equivalent  linearization  is  then  employed  to  determine  an 
approximate  root-mean-square (RMS) displacement  from  equation (22). 

Method of Equivalent  Linearization 

The  basic  idea of the  equivalent  linearization  (refs. 9 - 11) is  to  re- 
place  the  original  nonlinear  equation,  equation  (221,  with an equation of the 
form 
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where i-2 is  an  equivalent  linear or nonlinear  frequency,  and  err  is  the  error 
of linearization. An equivalent  linear  equation  is  obtained  by  omitting  this 
error  term,  then  equation (23) is  linear  and it can  be  readily  solved.  The 
error of linearization  is 

which  is  the  difference  between  equation (22) and  equation (23).  The  smaller 
that  the  error  is,  the  smaller  the  error in neglecting  it,  and  the  better 
approximate  solution  to  equation (22) will  be  obtained. To this  end,  the 
equivalent  linear  frequency  square R2 in the  linearized  equation  is  chosen in 
such  a  way  that  the  mean-square  error  err2  is  minimized,  that  is 

If  the  acoustic  pressure  excitation  p(t) is  stationary  Gaussian  and  ergodic, 
then  the  response  q  computed  from  the  linearized  equation,  equation (231, must 
also  be  Gaussian.  Substituting  equation  (24)  into  equation (25) yields  (refs. 
9, 13) 

where q2  is  the  maximum  mean-square  deflection of the  panel.  Dividing  both 
sides of equation (26) by  D/phb4  yields 

- 

where x2 is a nondimensional  equivalent  linear or nonlinear  frequency 
parameter. 

An  approximate  solution of  equation (23) is  obtained  by  dropping  the  error 
term;  the  mean-square  response of amplitude  is 

where S ( w )  is  the  spectral  density  function  of  the  excitation  pressure  p(t), 
and  the  frequency  response  function H(W) is  given  by 

For lightly  damped (5 < 0.05) structures,  the  response  curves  will  be  highly 
peaked at i-2. The  integration  of  equation (28) can  be  greatly  simplified  if  the 
forcing  spectral  density  function S ( 0 )  can be  considered  to  be  constant in the 
frequency  band  surrounding  the  nonlinear  resonance  peak a, so that 
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In  practice,  the  spectral  density  function  is  generally  given  in  terms of the 
frequency f in  Hertz. To  convert  the  previous  result one  must substitute 

and S (52) =i S (€)/27r 

into  equation (30.) ; the meansquare peak  deflection  is siinply 

32 Sf 
2 '  for  simply  supported  panels 

, for  clamped  panels 
81<i0x2 

The  pressure  spectral  density  function S(f)/27r  has  the  units  (Pa)  /Hz or (psi) 
/Hz,  and Sf is  a  nondimensional  forcing  excitation  spectral  density  parameter 
defined  as 

2  2 

The  linear  frequency  parameters x, in  equations  (32)  are  given  in  equation (14) 
and  equation  (20). for simply  supported  and  clamped  panels,  respectively,  and 
the  equivalent  frequency  parameters h2 can  be  determined  through  equation  (27). 

Solution  Procedure 

The  mean-square  response q2  in equation (30) (or  equation  32)  is  determined 
at  the  equivalent  linear  frequency n (or x) which  is in turn  related  to 
through  equation (126)  ('or equation 27). To  determine  the  mean-square  deflec- 
tion,  an iterativelrocedure  is introduced.  One  can  estimate  the  initial  mean- 
square  deflection -2 using  linear  frequency Wo through  equation  (30) as 

-0 

This  initial  estimate  of 3 is  simply  the  mean-square  response  based on linear 
theory.  This  initial  estimate of 3 can  now  be  used  to  obtain  refined  estimate 
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equation (30) 'as 

converges on the  n-th  cycle,  the  relation 

becomes  satisfied,  In  the  numerical  results  presented in the  following  section, 
convergence  is  considered  achieved  whenever  the  difference  of  the RMS displace- 
ments  satisfied  the  relation 

Stress  Response 

Once  the RMS displacement  is  determined,  the  bending  stresses on the  sur- 
face of the  panel  can  be  determined  from 

6D 

h 
= "  

'xb (w, + vw, 1 xx  YY 

' = - -  6D 

yb h 
(w, + vw, 1 

YY  xx 

From  equations ( 3 )  and (38), and  using  equations (4) , (6) , (7) and  (lo),  the 
expressions  for  the  nondimensional  stresses on the  surface of a  simply  supported 
panel  with  immovable  edges  are  given  by 

'xb 
2 

b2 2 
-= Tr TrX 'rrY 

2 (1-v 1 r  a  b 2 (axb + 0 1 - - r  - 
2 (2 + v,)cos - cos -1 q 

Eh xm Eh2 

Tr 

8r 

2 ~ r ( l + v r )  2 2 2 
Is 
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0 b2 b2 IT 2 V TrX 

2 2 a ” y - ( a  +cT 1:- - 1  (1 + -) cos - cos 3 q 
2 yb Eh 2 (1-v ) Eh r 

2 
IT ~ I T X  2 IT (r +v) 2 2  2 + (8 cos -1 q + 2 a I S  

8 r  (1-v ) 
2 (39) 

For movable   inplane  edges,   the  last  term in  equat ior l   (39)   vanishes .   Simi-  
l a r l y ,  f rom  equat ions ( 3 )  and (38) ,   and   us ing   equat ions  (7), (15), (17) ,   and  
(18), t h e   e x p r e s s i o n s   f o r   t h e   n o n d i m e n s i o n a l   t e n s i l e  stresses on t h e   s u r f a c e  
of a clamped  panel  with  immovable  edges are 

Oxb “ Tr 2 1  
2 

2 
- 

2 [y COS Ax  COS By) + V (l+cOS A x )  COS By] g 
Eh 2 ( 1 - V  ) r 

+ -  .’,.’ [t COS By + cos  Ax cos  By + - l4 cos 2By 
r (l+r2) 4 r  

+ cos 2Ax cos  By + cos Ax cos 2ByIq 
2 

(4+r 1 2 2  (1+4r 1 2 

2 2 
 IT (1+vr 1 2 

32r (1-v ) 
+ [  2 2 I s  

Tr 
2 

+ - [cos Ax + - 8 4 cos 2Ax + cos Ax cos By 2 2  
(l+r 1 

+ cos 2Ax cos  By + cos Ax cos 2By] q 
2 

(4+r2)  
2 2  

(1+4r 1 

3n (r +v) 2 2  2 

32r (1-v + [  2 2 3 s  

where A = 2n/a and B = 21~ /b .  For   movable   edges,   the  last term i n   e q u a t i o n  (40) 
vanishes .  
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Examining  equations (39) and   (40) ,  a gene ra l   exp res s ion  is  o b t a i n e d   f o r  
t h e  stress a t  a n y   p o i n t   i n   t h e   s t r u c t u r e  as 

a = c q + c q  2 
1 2 

where C and C2 are cons tan t s .  The constants  can  be  determined  from material 
propertles, d imens ions   o f   t he  panel, a n d   t h e   l o c a t i o n   a n d   d i r e c t i o n  a t  which 
t h e  stress is  t o  be measured. The mean-square stress is t h e n   r e l a t e d   t o   t h e  
mean-square  modal  amplitude  in a gene ra l   exp res s ion  as 

1 

Once the   mean-square   def lec t ion  q is de termined ,   equa t ions  (36) and (37), t h e  
mean-square stress can  then  be  obtained  from  equation ( 4 2 ) .  

2 

RESULTS AND DISCUSSION 

Because   o f   t he   compl i ca t ions   i n   ana lys i s   o f   t he  many coupled  modes,  only 
one-mode approximation is  used   i n   t he   fo rmula t ion .  The assumption for funda- 
mental  mode predominacy is admi t t ed ly   ove r ly   s imp l i f i ed ;   t he   cond i t ions   unde r  
which t h i s  is  a va l id   approximat ion   remain   to  be i n v e s t i g a t e d .  However, a 
simple model  sometimes  helps to   g ive   bas i c   unde r s t and ing   o f   t he   p rob lem.  

Us ing   t he   p re sen t   fo rmula t ion ,   r e sponse   o f   non l inea r   r ec t angu la r   pane l s  
w i th  a l l  edges  s imply  supported  and a l l  edges  clamped  subjected t o  broadband 
random a c o u s t i c   e x c i t a t i o n  are studied.  Both  immovable  and  movable  inplane 
edges are c o n s i d e r e d .   I n   t h e   r e s u l t s   p r e s e n t e d ,   t h e  spectral dens i ty   func t ion  
of t h e   e x c i t a t i o n   p r e s s u r e   S ( f )  is c o n s i d e r e d   f l a t   w i t h i n  a c e r t a i n   r e g i o n  
nea r   t he   equ iva len t   l i nea r   f r equency  f and a v a l u e   o f   P o i s s o n ' s   r a t i o   o f  0.3 
is  u s e d   i n  a l l  computations,   unless  otherwise  mentioned.  Mean-square  ampli-  
tudes   and   mean-square   nondimens iona l   s t resses   for   pane ls   o f   var ious   aspec t  
r a t i o s   a n d  damping r a t i o s   a r e   d e t e r m i n e d   a n d   p r e s e n t e d   i n   g r a p h i c a l   f o r m .  
These  graphs  can  be  used as g u i d e s   f o r   p r e l i m i n a r y   d e s i g n  of a i r c r a f t  panels. 
The maximum mean-square  def lect ion  can be reasonably   ob ta ined   f rom  these  
f igures ;   however ,   mul t ip le  modes had t o  be   cons idered   for   accura te   de te rmina-  
t ion   o f   mean-square   s t resses .   This   has   been   demonst ra ted   by   Se ide   in  
r e fe rence  15 f o r  a simple beam s u b j e c t e d  t o  u n i f o r m   p r e s s u r e   e x c i t a t i o n   a n d   i n  
r e fe rence  16 f o r   l a r g e   d e f l e c t i o n s   o f   p r e s t r e s s e d   s i m p l y   s u p p o r t e d   r e c t a n g u l a r  
p l a t e s   unde r   s t a t i c   un i fo rm  p re s su re .   Compar i son   w i th   expe r imen t  i s  also given.  
It i s  demonstrated  that   the   present   formulat ion  gives   remarkable   improvement   in  
p r e d i c a t i n g  RMS responses  as compared   w i th   u s ing   t he   l i nea r   t heo ry .  

Ana ly t i ca l   Resu l t s  

F igure  2 shows t h e  maximum mean-square  nondimensional   def lect ion  versus  
nond imens iona l   spec t r a l   dens i ty   pa rame te r   o f   acous t i c   p re s su re   exc i t a t ion   fo r  
r e c t a n g u l a r  panels o f   a spec t  ratios r = 1, 2 ,  and 4, and a damping ra t io  0.02. 
It i s  clear from t h e   f i g u r e   t h a t  an inc rease   o f  r w i l l  "close" the   cu rve .  
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This   occurs   because as r i n c r e a s e s ,   t h e   p a n e l  becomes less s t i f f ,  a n d   t h e  
mean-square d e f l e c t i o n   h a s  t o  be f i n i t e .  It can also be   s een   f rom  the   f i gu re  
t h a t   t h e  mean-square  def lect ion  of   the  movable   inplane  edges  case is  approxi-  
mately twice as t h a t  o f   t he  immovable  edges. 

The maximum mean-square  nondimensional stress (bending   p lus  membrane 
stress, a t  t h e   c e n t e r   o f   t h e  panel a n d   i n   t h e   y - d i r e c t i o n )  is  g i v e n   i n   F i g u r e  
3 as a func t ion  of e x c i t a t i o n  spectral d e n s i t y  parameter fo r   s imp ly   suppor t ed  
r e c t a n g u l a r  panels o f   v a r i o u s  aspect ratios and a damping f ac to r   0 .02 .  
Resu l t s  showed t h a t   t h e   d i f f e r e n c e   o f  maximum mean-square stresses between 
immovable  and  movable  edges i s  small as compared w i t h   t h e   d i f f e r e n c e   o f  mean- 
squa re   de f l ec t ions   be tween   t he  t w o  edge   condi t ions .  

F igure  4 shows the   mean- squa re   de f l ec t ion   ve r sus   fo rc ing   spec t r a l   dens i ty  
p a r a m e t e r   f o r   s i m p l y   s u p p o r t e d   s q u a r e   p a n e l s   o f   d i f f e r e n t  damping ratios. The 
corresponding maximum mean-square s t r e s s   ( b e n d i n g   p l u s  membrane stress, a t  t h e  
cen te r   o f   pane l )  i s  shown i n   F i g u r e  5. A s  it can   be   s een   f rom  the   f i gu re   t ha t  
t h e   p r e c i s e   d e t e r m i n a t i o n   o f  damping ra t io  from  experiment is  impor t an t ,   e .g . ,  
stress i n c r e a s e s  by  25-30 p e r c e n t  as < i s  decreased  from  0.015 t o  0 . 0 1   ( f o r  
S between  5000 t o  20000). f 

P l o t s   o f   t h e   e q u i v a l e n t   l i n e a r   o r   n o n l i n e a r   f r e q u e n c y   p a r a m e t e r  X 
versus  mean-square modal ampl i tude   fo r   s imp ly   suppor t ed   r ec t angu la r   pane l s  of' 
aspect ratios r = 1, 2 , and 4 are shown i n   F i g u r e   6 .  The lowest   value  of  X2 
corresponds t o  t h e   l i n e a r   c a s e .  

2 

In   Figure  7 ,   the   mean-square  def lect ion is  given as a f u n c t i o n   o f   e x c i t a -  
t i o n  spectral d e n s i t y   p a r a m e t e r   f o r   r e c t a n g u l a r   p a n e l s   o f   a s p e c t   r a t i o s  
r = 1, 2,  and 4 and a damping ra t io  0.02. The maximum mean-square  def lect ion 
of   the   c lamped  pane ls  is  somewhat much less than   tha t   o f   the   s imply   suppor ted .  
The corresponding maximum mean-square  nondimensional  stress  (bending  plus 
membrane s t r e s s ,   i n   t h e   y - d i r e c t i o n   a n d   a t   t h e   c e n t e r   o f   t h e   l o n g   e d g e )   v e r s u s  
s p e c t r a l   d e n s i t y  parameter is  shown i n   F i g u r e  8. 

Figure 9 shows the   mean-square   modal   ampl i tude   versus   spec t ra l   dens i ty  
p a r a m e t e r   o f   e x c i t a t i o n   f o r  a s q u a r e   p a n e l   o f   d i f f e r e n t  damping ratios. I n  
F igu re   10 ,   t he   equ iva len t   l i nea r   f r equency   pa rame te r  is  given as a func t ion  
of   mean-square   def lec t ion   for   c lamped  rec tangular   pane ls   o f  aspect r a t i o s  
r = 1, 2 ,  and 4. 

Comparison  with  Experimental   Results 

The experimental   measurements on sk in - s t r inge r   pane l s   exposed  t o  random 
p r e s s u r e   l o a d s   r e p o r t e d   i n   r e f e r e n c e s  3 and 4 are used t o  demonst ra te   the  
improvement i n   p r e d i c t i n g   p a n e l   r e s p o n s e s  by u s i n g   t h e   p r e s e n t   f o r m u l a t i o n .  
The s t r u c t u r e  w a s  a s k i n - s t r i n g e r ,  3-bay  panel as shown in  Figure  11. The 
pane l s  were cons t ruc t ed   o f  7075-T6  aluminum a l l o y .  Details o f   t h e  test  
f a c i l i t y ,   n o i s e  sources, tes t  f i x t u r e ,   a n d  test resul ts  a r e   g i v e n   i n  
r e f e r e n c e  3. The i m p o r t a n t   p r o p e r t i e s   o f   t h e  panel are 
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Length a = 68.58 c m  (27 i n . )  

Width   be tween  the   r ive t  l i n e s  b = 16.84 cm (6 .63   in . )  

Thickness h = 0.81 mm (0.032 i n . )  

Damping r a t i o  5 = 0.0227 

Po i s son ' s  ra t io  v = 0.33 

Young's  modulus 

Weight d e n s i t y  p = 7.164 kg/m3 (0.1 l b / i n .  1 

E = 66.19xlO ma (9.6xlO ps i )  3 6 

3 

The tests were conduc ted   w i th   an   ove ra l l   sound   p re s su re   l eve l  (SPL) of 157 dB, 
wi th  a range  of L l . 5  dB which  corresponds t o  an average   spec t rum  leve l   o f  
125.26 dB (see Table I V  o f   r e f .  3 or Table  8 of r e f .   1 7 ) .  The c e n t r a l  bay of 
the   +bay  t e s t  p a n e l s  is  s imula ted  by a f l a t   r e c t a n g u l a r  plate.  The l i n e a r  
f r equenc ie s   fo r   bo th   s imply   suppor t ed   ( equa t ion  (14))  and  clamped  (equation 
(20))  suppor t   cond i t ions  are c a l c u l a t e d   a n d  shown i n  Table 1. Test measure- 

ments a n d   f i n i t e   e l e m e n t   s o l u t i o n  are a l so   g iven   fo r   compar i son .  Table 1 also 
shows t h e   e q u i v a l e n t   l i n e a r   o r   n o n l i n e a r   f r e q u e n c i e s  a t  o v e r a l l  SPL 157 dB. 

Table 1. Frequency  Comparison 

N a t u r a l   E q u i v a l e n t   l i n e a r  
f requency f f requency f 

0 157 

Simply  supported - Immovable edges 
- Movable  edges 

Clamped - Immovable edges 
- Movable edges 

71  32 1 
71  240 

159 
159 

311 
264 

F in i t e   e l emen t   ( r e f .   4 )   155  N/A 

Experiment   ( ref .   3)   126,   129 N/A 

Frequency a t  h i g h   i n t e n s i t y   n o i s e   l e v e l  w a s  n o t   r e p o r t e d   i n   r e f e r e n c e  3 .  From 
t h e   r e s u l t s  shown i n  Table 1, it i s  c l e a r   t h a t   t h e   c e n t r a l  bay   of   the  tes t  
panels   d id   no t   respond t o  t h e   a c o u s t i c   e x c i t a t i o n  as though it were f u l l y  
clamped  on a l l  four   edges .   This  w a s  also demons t r a t ed   i n   F igu res  1 2  and  17  of 
r e fe rence  3 i n   t h e   s e n s e   t h a t   t h e   h i g h e s t   m e a s u r e d  RMS s t r a i n s   d i d   n o t   o c c u r  
a t  the   cen ter   o f   the   long   edges .  The c e n t r a l  bay  of t h e  tes t  p a n e l s   a c t u a l l y  
behaved  somewhat  between fu l ly   s imply   suppor ted   and   fu l ly   c lamped  suppor t  
cond i t ions .  

The a c o u s t i c   p r e s s u r e  spectral d e n s i t y  S(f) is  r e l a t e d  t o  the   spec t rum 
l e v e l  L as 
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8.41 x 1 0  (L/10 - 18) (psi) 2 /Hz 

S ( f )  = 

(L/10 - 8 )  2 2  4 x 1 0  (dynes/cm 1 /Hz 

(471 

A s p a t i a l l y   u n i f o r m   w h i t e   n o i s e   p r e s s u r e   l o a d i n g   w i t h  spectral d e n s i t y   o f  
S ( f )  = 2.824 x (psiI2/Hz (or nond imens iona l   spec t r a l   dens i ty  parameter 
Sf = 5100),   which  corresponds t o  an   average   spec t rum  leve l  L = 125.26  dB, is  
used   in   the   computa t ions .  The RMS s t r e s s e s   ( e q u a t i o n   ( 4 2 ) )  a t  t h e   c e n t e r  of 
the  long  edges  for   s imply  supported  (equat ion  (39))   and  c lamped  (equat ion  (40)  ) 
boundary  condi t ions are c a l c u l a t e d   a n d   g i v e n   i n  Table 2. 

Table 2 .  S t r e s s  Comparison 

(RMS stress, kps i  a t  o v e r a l l  SPL 157 dB) 

Simply-Supported 

Clamped 

JT 
Linear  Nonlinear Linear  Nonlinear 
Theory Theory Theory Theory 

0.0 0.58 (Im. ) 0.0 3.28(Im.) 
0.17  (Movable ) 2.74  (Movable) 

2.17 1 .12  ( I m . )  6.57  3.84 ( I m . )  
1.32  (Movable)  4.24  (Movable) 

F i n i t e  Element ( r e f .  4 )  2 .4  NA 7.7 NA 

Experiment  (refs.   3,  4 )  
Panel A 
Panel B 
Panel C 
Panel D 
Panel  E 
Average A-E 

0.63 
0.94 
0.78 
1.1 
0.84 
0.87 

2 .2  
2 .9  
2.5 - 
2.2 
2.5 

Table 3 shows t h e  RMS d e f l e c t i o n s   u s i n g   t h e   p r e s e n t   f o r m u l a t i o n .  The 
measured  and f i n i t e   e l e m e n t  RMS stresses and RMS d e f l e c t i o n s   i n   r e f e r e n c e  4 
are a l s o   g i v e n   i n   t h e   t a b l e s   f o r   c o m p a r i s o n .  It d e m o n s t r a t e s   t h a t  a better 
cor re la t ion   be tween  theory   and   exper iment   can   be   ach ieved  when large d e f l e c -  
t i o n   g e o m e t r i c a l   n o n l i n e a r i t y   e f f e c t  is  i n c l u d e d   i n   t h e   f o r m u l a t i o n .  
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Table 3 .  Deflection  Comparison 

Simply  Supported 

Clamped 

F in i t e   E lemen t   ( r e f .  4 )  

Measured (refs. 3,  4 )  

J- max 

Linear  Theory 

8.0 

2.7 

3.1 

Nonlinear  Theory 

1.8 (Immovable) 
2.4 (Movable) 

1 .4  (Immovable 1 
1 .6  (Movable 1 

NA 

2.0 

CONCLUDING REMARKS 

An a n a l y t i c a l  method f o r   p r e d i c a t i n g   r e s p o n s e  of r e c t a n g u l a r   n o n l i n e a r  
s t r u c t u r a l   p a n e l s   s u b j e c t e d   t o   b r o a d b a n d  random a c o u s t i c   e x c i t a t i o n  i s  pre-  
sen ted .  The formula t ion  is based  on  the  Karman-Hermann  large  def lect ion 
plate equa t ions ,  a s ingle-mode   Galerk in   approximat ion ,   the   equiva len t  linear- 
i z a t i o n  method,  and an i te ra t ive   p rocedure .   Both   s imply   suppor ted   and   c lamped 
suppor t   cond i t ions   w i th  immovable or movable  inplane  edges are considered.  
Panel   mean-square  def lect ion,  maximum mean-square stress, a n d   e q u i v a l e n t   l i n e a r  
frequency a t  g i v e n   e x c i t a t i o n   p r e s s u r e  spectral dens i ty   can   be   de te rmined ,   and  
t h e y  are presented   in   g raphica l   form.   These   g raphs   can  be used as g u i d e s   f o r  
pre l iminary   des ign   of   a i rc raf t   pane ls   under   h igh   no ise   envi ronment .   Resul t s  
ob ta ined   ag ree  w e l l  wi th   the   exper iment .  It is s u g g e s t e d   t h a t   f u r t h e r   r e s e a r c h  
b e   c a r r i e d   o u t   w i t h  special a t t e n t i o n  t o  employ m u l t i p l e  modes i n   t h e   f o m u l a -  
t i o n   f o r  accurate determination  of  mean-square stresses, a n d   a d d i t i o n a l  tes t  
d a t a  on s imple   pane l s  are needed   for   an   adequate   quant i ta t ive   compar ison .  
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Figure 1. Geometry  and coordinates. 

/' IMMOVABLE  EDGES 
MOVABLE  EDGES "_ 

Figure 2 .  Mean-square deflection  versus  spectral  density 
parameter  of  excitation  for simply  supported 
panels, 5 = 0.02.  
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Figure 3. Maximum  mean-square  stress  versus  spectral 
density  parameter of excitation for simply 
supported  panels, 5 = 0.02. 
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Figure 4. Effect of damping on mean-square deflection for a 
simply supported square panel. 

1 59 



........... , , . .  . -  
I 

IMMOVABLE EDGES 
"- MOVABLE  EDGES 

Figure 5. Effects  of  damping on maximum mean-square 
stress f o r  a simply  supported  square  panel.  
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Figure 6. Frequency parameter versus  mean-square 
def lec t ion   for   s imply   suppor ted   pane ls .  
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Figure 7. Mean-square deflection  versus  spectral  density 
parameter of excitation  for clamped panels, 
5 = 0.02 .  
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Figure 8. Maximum mean-square stress  versus  spectral   density 
parameter of excitation  for clamped panels, 
5 = 0.02. 
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Figure 9. Effects of damping  on mean-square deflection 
for  a clamped square  panel. 
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Figure lo. Frequency parameter  versus mean-square 
deflection  for clamped panels. 
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L0.040AN6LE 
SECTION A - A  

NOTE: DIMENSIONS IN  INCHES 

Figure  11. S k i n - s t r i n g e r   p a n e l   ( a f t e r  Van der Heyde and 
Smith, ref. 3 ) .  
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POST-BUCKLING  BEHAVIOR  OF A BEAM-COLUMN 

ON A NONLINEAR  ELASTIC  FOUNDATION  WITH A GAP' 

Edward  N.  Kuznetsov 
Battelle  Columbus  Laboratories 

Thomas G. Johns 
Battelle  Houston  Operations 

SUMMARY 

The  subject  of  this  paper  is  the  structural  behavior  of an elastic  beam- 
column  placed  with  a  gap  between  two  nonlinearly  elastic  layers  each  resting 
on a  rigid  foundation.  The  beam-column  is  laterally  supported  at  both  ends 
and  subjected  to  a  uniform  transverse  load  and  axial  compression.  Its 
slenderness  is  such  that  the  axial  compressive  force  exceeds  the  amount  that 
would  be  necessary  to  buckle  it  as  a  simply  supported  column.  The  elastic 
layers  are  represented  by an elastic  foundation  with  a  strongly  nonlinear 
specific  reaction  taken  as  a  rapidly  increasing  function  of  the  layer  com- 
pression.  The  analytical  model  developed  simulates  the  entire  pattern  of  the 
deflection  and  stress  state  including  layer  and  end  support  reactions,  under 
gradually  increasing  axial  force. 

INTRODUCTION 

There  are  many  cases  when  a  primary  buckling  mode  occurring  at  the  onset 
of buckling  cannot  develop  freely  (References  1-2)  because  of  changing  con- 
straint  or  support  conditions.  Such  is,  in  particular,  the  case  of  a  column 
with  lateral  supports  arranged  with  gaps,  etc.  In  this  case,  the  post-buckling 
deflection  is  constrained  laterally  and  the  axial  force  can  be  increased  by  far 
in  excess  of  its  first  critical  value.  As  a  result,  the  structural  behavior 
is  characterized  by  a  sequence  of  alternating  gradual  changes in the  deformed 
configuration  and  rather  abrupt  jumps fromone equilibrium  configuration  to 
another.  A  similar  behavior  pattern  was  observed  (Reference 3 )  for  a  com- 
pressed  plate. 

The  subject  of  this  paper  is an elastic  beam-column  placed  with  a  gap 
between  two  nonlinearly  elastic  layers  each  resting on a  rigid  foundation 
(Figure 1). The  beam-column  is  laterally  supported  at  both  ends  and  subjected 

This  study was  sponsored  by  the  American  Gas  Association  Pipeline  Research 
Committee . 
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to  a  uniform  transverse  load  and  axial  compression. The  elastic  layers  have  a 
strongly  nonlinear  specific  reaction  taken  as  a  rapidly  increasing  function  of 
the  layer  compression. The problem  consists in the  analytical  evaluation  of  the 
stress  state  and  deflection  under  gradually  increasing  axial  compression. 

The  deflection  of  the  beam-column in consideration is small  enough  to 
justify  the  use of.the conventional  linearized  expression  for  the  curvature. 
However,  there  are  two  other  sources  of  nonlinearity  (nonlinearly  elastic 
layers  and  the  presence  of  a  gap)  which  were  fully  accounted  for.  Note,  that 
the  presence  of  a  transverse  load  makes  the  problem  nonhomogeneous so that  it 
is not  a  bifurcation  problem. 

ANALYTICAL  FORMlTLATION AND SOLUTION  METHOD 

Under  the  above  assumptions,  vertical  equilibrium  of  the  beam-column 
requires  that 

F(Y) EIY(X)I~ + PY(X)II + Q(Y(~)) - G = 0 (1) 

Here Y is  the  elastic  deflection of the  beam-columny E1 is its  flexural 
rigidity,  is  the  axial  compression  force, Q(Y) is  the  foundation  reaction  per 
unit  length  as  a  function of Y, G is  the  distributed  transverse  load  (assumed 
uniform  and  constant), x' is the  column  longitudinal  axis  and  prime  denotes 
differentiation  with  respect  to  x. 

The  elastic  foundation  reaction  is  taken in the  following  form: 

where k and  n  are  given  constants  and  c is the  gap  size.  Thus,  the  foundation 
reaction  is  proportional  to  a  power of the  beam-column  penetration  into  the 
elastic  layer. 

The  self-correcting  finite  increment  method  (Reference 4 )  will  now  be 
applied  for  solving  Equation (1). To  this  end  the  compression  force  P  is 
given an infinitesimal  increment p which  results in some  infinitesimal  varia- 
tion y(x) of  deflection  Y (x) : 

F(Y+y) F E1 (Y+y) + (P+p)  (Yt-y) 'I + Q (Y+y) - G = 0 .  IV 
(3)  

Specializing Q(Y) in  accordance  with  Equation (2) yields 

F (Y) + EIy  IV + Py" + pY1' +{ 0 
kn (Y-c)  n-ly 

- G  = 0 .  
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The  operation  performed  is  known  as  Frechet  differentiation. It resulted 
in  a  linearized  equation in unknown  variation y(x) and  is  rigorous  for  in- 
finitesimal  increments  only.  The  equation  is  extrapolated  to  small  but  finite 
increments  which  permits itsuse in  a  step-by-step  solution  procedure. A 
solution  obtained  at  each  step is  an  approximate  one.  Therefore,  employing 
it  as a starting  point  for  the  next  step  introduces  some  error in addition  to 
that  resulting  from  the  next  step  itself.  This  is  partially  offset  by  a 
correction  which  consists in retaining  the  first  term in Equation ( 4 ) .  For  an 
exact Y(x), this  term,  according  to  Equation (1) would  be an identical  zero. 
Since in reality  the  solution  obtained  after  the  m-th  step, 

Y"(X) = Ym-l(x) + ym(x) , 
is  approximate,  it  does  not  turn F(Y) into  zero.  Retaining  this  term in 
Equation ( 4 )  compensates  for  the  error  of  a  current  step  solution  thus 
preventing  both  systematic  and  occasional  errors  from  passing  to  the  next  step 
and  accumulation. 

The  solution  of  linearized  Equation ( 4 )  is  sought in the  form  of  a  linear 
combination of several  approximating  functions  satisfying  the  boundary  con- 
ditions  of  the  problem: 

where R is  the  beam  half-length  (Figure 2). As is  readily  seen,  only 
symmetric  configurations  of  the  beam  are  taken  into  consideration.  This  was 
done  because  the  particular  case  of  interest  is  characterized  by  a  relatively 
big  transverse  load,  which  precludes  the  antisymmetric  configurations  from 
occurrence  at  the  early  stages  of  post-buckling  deformation. (The uniform 
transverse  load  would  perform  zero  mechanical  work  over  antisymmetric  dis- 
placements). 

The  Galerkin  method is now  applied. It requires  substituting  the  above 
y(x) into  Equation ( 4 ) ,  multiplying  it  by  one  of  the  approximating  functions 
and  integrating  the  product  over  the  beam  length.  This  results in  a  system  of 
N linear  algebraic  equations  in  unknown  parameters  y  with  coefficients i 

R 

and  free  terms 

a = (DiEI-P)Di t + sS(x) sin 2R dx 2 (2i-1)rx 
ii 0 

R 
aij = J S(x)sin (2i-1)nx sin (2j-1)rx dx 

0 2R  2R 

R 

a = - D ~ Y ~ ~  + JF(~) sin (2i-1) rx 2R io 0 
( 8 )  
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where 
n 

S(x) = kn[Y  (x)-cln-' 

N' 

Obviously,  making  the 

D.Y.sin (2i-l)~x 
1 1  2R + Q [Y(x)l-G 

(10) 

axial  force  increments  smaller  improves  the 
accuracy  of  the  solution,  but  increases  the  number  of  solution  steps. A 
reasonable  compromise  was  achieved  by  arranging  intermediate  iterations in 
which  Equation ( 4 )  was solved  without  incrementing  the  axial  force  (i.e., 
setting p = 0). In these  iterations,  the  pattern  of  the  beam  interaction  with 
the  elastic  layers  is  refined  for  the  fixed  magnitude  of  the  axial  force.  Only 
after  some  assigned  level  of  accuracy  is  reached,  the  axial  force is given  its 
next  increment. 

The  specificity  of  the  problem in consideration  is  that  more  than  one 
equilibrium  configuration  may  correspond  to  a  given  axial  force.  To  determine 
whether  other  equilibrium  configurations  exist in the  vicinity  of  the  original 
one,  the  following  approach  is  employed.  Upon  achieving  the  convergence  of 
the  internal  iterations  for  a  fixed  value  of  the  axial  force,  the  system  is 
perturbed  by  giving  the  deflection  some  random  distortion  and  internal  itera- 
tions  are  performed  once  again.  This  may  result in overcoming  the  energy 
barriers  separating  the  possible  equilibrium  configurations  and  increases  the 
likelihood  of  solution  convergence  to  the  most  stable  configuration. 

The  perturbation  is  physically  meaningful:  it  reflects  imperfections  in 
material  properties,  system  geometry,  load  application  and  many  other  factors 
not  accounted  for  explicitly.  The  magnitude  of  the  distortion  presumably 
correlates  with  the  mentioned  imperfections. 

A computer  program  implementing  the  above  features  was  written  and 
applied  to  the  analysis  of  a  precompressed  cryogenic  pipeline. 

NUMERICAL  RESULTS AND DISCUSSION 

The  concept  of  preshortening  a  cryogenic  pipeline  by  compression  is 
intended  to  reduce or eliminate  the  need for  thermal  expansion/contraction 
devices.  The  concept  involves  the  compression  of  one  pipe  (inner,  conveying 
pipe)  within  another  (casing  pipe). The  pipes  are  separated  by  thermal 
insulation  and an air  gap  (clearance)  exists  between  the  insulation  and  the 
inner  or  the  outer  pipe.  The  magnitude  of  the  compressive  force  is  limited 
by  the  amount  that can be  tolerated in the  inner  pipe  wichout its local 
inelastic  buckling  as  a  cylindrical  shell  (Reference 5) .  Under  this  force, 
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tigated  to  determine  the 
effect  of  design  variables  such  as  the  gap  size,  pipe  length,  insulation 
elastic  properties,  etc.,  upon  the  maximum  stresses,  lateral  reactions,  and 
amount  of  absorbed  compressed  length. 

The  following,  rather  typical  data  were  used in one of the  numerical 
examples : 

0 pipe  length - 100 m  (328  ft) 
0 pipe  outer  diameter - 46.7 cm (18 inches) 
0 wall  thickness - 0.9525 cm  (3/8  inch) 
0 clearance - 2.54 cm (1 inch) 
0 permissible  stress - 320 MF'a (46  ksi). 

Figure  3  shows  the  evolution  of  the  elastic  deflection  of  the  pipe  as  the 
compression  force  grows.  Diagram  3a  is  the  sagged  configuration  of  the  pipe 
resting on the  elastic  layer  almost  uniformly  compressed. As the  axial  force 
is  increased,  the  pipe  bends  and  develops  progressively  increasing  waviness 
(3b  and  c)  till  the  end  segment  ''snaps  through"  (3d).  At  this  moment  the  pipe 
assumes  another  equilibrium  configuration  which  continues  its  evolution in 
further  loading (3e). 

The  results  of  numerical  experiments  confirmed  the  role  of  systematic 
perturbations  applied  during  the  analysis in order  to  obtain  equilibrium 
states  with  lower  total  energy.  In  all  cases  the  self-correcting  finite 
increment  method  provided  a  rapid  convergence  of  the  computation  process. 

From  the  viewpoint of the  precompression  concept  it  was  important  to 
establish  the  role  of  the  gap  between  the  pipe  and  insulation.  Conceivably,  a 
wider  gap  could  even  be  an  advantage  since  it  would  provide  more  room  with 
which  to  absorb  the  ''excess"  pipe  length. A parametric  study  showed,  however, 
an adverse  effect  of  the  gap on the  relative  compression  of  the  pipe:  the 
wider  the  gap,  the  greater  the  portion  of  the  material  strength  spent  on 
bending  stress.  Interestingly,  the  maximum  stress  (composed  of  the  axial  and 
bending  stresses)  does  not  grow  monotonically  with  the  compression  force. 

The  performed  study  also  revealed  the  role of the  pipe  length. A s  shown 
in  Figure 4 ,  the  amount  of  compression  that  can  be  absorbed  without  exceeding 
the  permissible  stress  increases  for  shorter  lengths of pipe.  The  limiting 
case  is  the  pipe  length  at  whichoverallbuckling  does  not  occur  at  all. 
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P-)- 

Figure 1.- Beam-column between two layers of 
elastic  foundation  with gap. 

Figure 2.- Buckled column segment with partial  
contact with foundation. 
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STRAIGHTENING OF A WAVY STRIP - AN ELASTIC-PLASTIC 

CONTACT PROBLEM INCLUDING SNAP-THROUGH 

D i e t e r  F. Fischer   and  Franz G. Rammerstorfer 
VOEST-ALPINE AG, FAT, L inz ,   Aus t r i a  

SUMMARY 

Thi s  paper d e a l s   w i t h   c a l c u l a t i n g   t h e   n o n - l i n e a r   b e h a v i o u r   o f  a wave-like 
deformed  metal strip d u r i n g   t h e   l e v e l l i n g   p r o c e s s .   E l a s t i c - p l a s t i c  material 
behaviour  as we l l  as n o n l i n e a r i t i e s   d u e   t o   l a r g e   d e f o r m a t i o n s   a r e   c o n s i d e r e d .  
The cons idered   problem  leads   to  a  combined s t a b i l i t y  and  contact   problem. I t  is  
shown t h a t ,   d e s p i t e  of t h e   i n i t i a l l y   c o n c e n t r a t e d   l o a d i n g ,   n e g l e c t i n g   t h e  
change   of   loading   condi t ions   due   to   a l te red   contac t   domains  may l e a d   t o  a 
s i g n i f i c a n t   e r r o r   i n   t h e   e v a l u a t i o n   o f   t h e   n o n l i n e a r   b e h a v i o u r   a n d   p a r t i c u l a r l y  
t o  a n   u n d e r e s t i m a t i o n   o f   t h e   s t a b i l i t y  l i m i t  l oad .  The s t a b i l i t y  i s  examined  by 
cons ide r ing   t he   l oad   de f l ec t ion   pa th   and   t he   behav iour  of a load-dependent 
c u r r e n t   s t i f f n e s s   p a r a m e t e r   i n   c o m b i n a t i o n   w i t h   t h e   d e t e r m i n a n t   o f   t h e   c u r r e n t  
s t i f f n e s s   m a t r i x .  

INTRODUCTION 

The s t a b i l i t y   o f   n o n l i n e a r   s t r u c t u r e s  i s  the   goa l   o f  many r e c e n t   p a p e r s .  
Espec ia l ly   t he   snap - th rough   behav iour   o f   i n i t i a l ly   cu rved   s l ende r   ba r s   has   been  
a n a l y t i c a l l y   a s   w e l l   a s   n u m e r i c a l l y   c o n s i d e r e d   ( e . g .   r e f .  1 ,2 ) .  B u t  
i n v e s t i g a t i o n s   i n  which  the  inf luence  of   contact   between  the  loading  and  the 
l o a d e d   s t r u c t u r e s  is  c o n s i d e r e d   a r e   r a t h e r   r a r e .  Such  a  combined c o n t a c t  and 
s t a b i l i t y   p r o b l e m  w i l l  b e   t r e a t e d   i n   t h i s   p a p e r .   I n   o r d e r   t o  show how t h e  
load ing   cond i t ions   i n f luence   t he   non l inea r   behav iour   and   t he   s t ab i l i t y  l i m i t  i n  
p a r t i c u l a r ,  l e t  us draw  our   a t ten t ion   to   the   fo l lowing   s imple   example .  

F igure  1 shows  a sha l low  c i r cu la r   a r ch   wh ich  is  l o a d e d   o n c e   d i r e c t l y  by a 
concen t r a t ed   l oad   and   i n  a second  case  by a r i g i d   h o r i z o n t a l   p l a n e  plate  moved 
towards   the   a rch .  The la t ter  is  t r e a t e d  as a contac t   p roblem.   In   bo th   cases ,  
symmet ry   w i th   r e spec t   t o   t he   ve r t i ca l   ax i s  is assumed f o r   s i m p l i c i t y .  

Applying  the  algorithm  which is  desc r ibed  la ter  w e  g e t   r e s u l t s  shown i n  
f i g u r e  2.  I n   f i g u r e  2 the   load   d i sp lacement   pa th ,  P ( w ) ,  the   dependence   of   the  
no rma l i zed   de t e rminan t   o f   t he   cu r ren t   s t i f fnes s  matrix, d e t & ( P ) ,   a n d   o f   t h e  
c u r r e n t   s t i f f n e s s   p a r a m e t e r   ( r e f .  3 , 4 ) ,  CS(P) ,   on   the   appl ied   load ,   P ,  is 
d e s c r i b e d .   I n   b o t h   c a s e s ,   d i s t i n c t   s n a p - t h r o u g h   b e h a v i o u r   c a n   b e   o b s e r v e d   b y  
cons ide r ing   t he   f i na l   t angen t   o f   t he   de t&(P)   cu rve   wh ich   c ros ses   t he   P -ax i s  
p e r p e n d i c u l a r l y   ( r e f .  5 ) .  A l s o  t h e   v a n i s h i n g   c u r r e n t   s t i f f n e s s   p a r a m e t e r ,  CS, 
indicates   snap-through.  However i n   t h e  case b (load a p p l i c a t i o n  by a r i g i d  
p l a t e )  a s i g n i f i c a n t l y   h i g h e r   s t a b i l i t y  l i m i t  t h a n   i n  case a w a s  found.  Thus, 
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it is  important  to  recognize  the  altering  loading  conditions  even  if  the  load 
is applied-at a  single  point in the  initial  state  (i.e. at a  very  low  load 
level).  The  problem  being  dealt  with in the  following  chapters  is  a  typical 
stability  and  contact  problem. 

DESCRIPTION OF THE  WAVED  STRIP  PROBLEM 

The  behaviour of an infinite  strip  with  periodic  wave-like  initial  out- 
of-plane  deformations  is  investigated  during  a  straightening  process.  Periodic 
out-of-plane  deformations  at  the  boundaries  (fig. 3 )  or  in  the  middle  domain  of 
the  strip  sometimes  appear  in  metal  sheets  as  a  consequence of the  rolling 
process.  The  straightening is based on plastic  deformations  caused  by  moving 
the  strip  through  a  leveller  in  which it is  bent  by  rollers  in  a  repeated 
manner. In  some  cases,  a  snap-through  of  the  waves  can be observed  which 
renders  an  unsuccessful  result  of  the  levelling  process. In order  to  find p r o p  
conditions  for  avoiding  snap-through,  a  procedure  for  calculating  the  non- 
linear  elastic-plastic  stability  problem  was  developed.  The  deformations  during 
levelling  are  caused  by  rather  stiff  rollers. A contact  problem  has  to  be 
solved  simultaneously  with  the  stability  problem in  order  to  account  for  the 
stiffening  effect due to  expanded  contact. 

To approach  the  real  behaviour  of  the  waved  strip  during  the  levelling 
process  by  mathematical  investigation,  the  complicated  transient  problem is 
simplified  to  a  static  consideration:  The  nonlinear  behaviour of the  shaded 
area of the  strip  in  figure 3 under  a  downward  moving  rigid  roller  is 
calculated  with  the  aid of the  finite  element  method. 

THE  MATHEMATICAL  MODEL 

The  following  data  were  taken  from  an  example in  which  instabilities  in 
the  practical  levelling  process  were  observed: B = 3500 mm, L = 1000 mm, 
S = 20 mm, t = 10 mm. The  material  is  assumed  to  be  elastic-plastic  with  linear 
strain  hardening.  The  following  material  properties  correspond  to 
experimentally  derived  values at  a  temperature  of 600 OC (the  strip  temperature 
during  the  levelling  process):  E = 180000 N/mm2  (Youngs'  modulus), v = 0.3 
(Poisson's  ratio) , cry = 130 N/mm2 (initial  yield  stress) , ET = 5000 N / m 2  
(strain  hardening  modulus).  The  shaded  area in  figure 3 under  consideration 
represents  a  doubly  curved  shallow  shell  which  is  modeled  using ADINA shell 
elements  (ref. 6). These  elements  allow  for  nonlinear  material  behaviour  as 
well  as  geometric  nonlinearities  using  the  total  Lagrangian  formulation. 
Figure 4 shows  the  finite  element  model. 

The  midsurface  of  the  shell  is  approximated  by 

z (x,y) = S ~2 sin 4Y2 (L-2x1 IT 
2L 

As shown in reference 7 the  contact  conditions  can  be  verified  with  the 
aid  of  contact  elements.  These  contact  elements  are  simple  truss  elements 
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which  have  a  certain  nonlinear  elastic  material  behaviour  (figure 5). 

The  contact  elements  give  only  contributions  to  the  global  current 
stiffness  matrix  if  the  shell  nodes  to  which  they  are  attached  belong to the 
contact  area.  They  allow  only  transmission  of  compression  forces  corresponding 
to  the  contact  pressure.  Before  a  shell  node  becomes  a  contact  point,  the  gap 
between  the  rigid  roller  and  the  shell  surface  must  be  closed.  This  is 
accounted  for in the  location-dependent  activating  strain, ~ ~ ~ ~ ( y ) :  

E 
s-2 (x=O,y) 

gap = - S+h-z(x=O,y) 
The  values  of  the  tangent  moduli, El, E2, the  stresses,  al"  and ~72~:~ the 

fictitious  length, h, and  the  cross  section  area, A,  of the  contact  elements 
must  be  properly  chosen.  This  means  that  the  contact  elements  should  be  stiff 
enough to  prevent  the  roller  from  penetrating in the  shell  and,  that  the 
properties  must  not  lead to a  numerical  instability  of  the  incremental- 
iterative  algorithms  described  below.  The  following  values  appear  in  the 
presented  analysis: E1 = 1000 N/mm2, 
02"= -20 N / m 2 ,  h = 80 mm, A = l o 0 0  mm . These  values  render  a  well- 
conditioned  system  of  equations. If  one  would  like  to  regard  the  local 
compressibility  of  the  roller,  a  certain  choice  of  the  a-E-behaviour  of  the 
contact  elements  would  make it possible.  Furthermore,  bending  deformations  of 
the  roller  could  be  considered,  if  beam  elements  would  represent  the  axis of 
the  roller  instead  of  the  rigid  line  (figure 4). Both  effects,  local 
compressibility  and  bending of the  roller,  are  negligible in the  investigated 
example. 

E$ = 
7500 N/mm2, ~ 1 " =  -5 N/m2, 

In order  to  represent  the  periodicity  of  the  structure,  the  boundary 
conditions  of  the  finite  element  model  are  introduced  as  shown  in  figure 4. 
The  waved  strip  will  elongate  globally  due  to  the  levelling  process.  For  the 
x-displacement  at  the  boundary  x = L/2  the  following  restriction is valid: 
ux(x=L/2,y) = ux(x=L/2,y=0). 

DESCRIPTION  OF  THE  ALGORITHMS 

The  analysis  is  performed  in  an  incremental-iterative  manner,  using  the 
tangent  stiffness  matrix  concept  and  the  BFGS  iteration  procedure  as  described 
elsewhere, e.g. in  references 8,9. Let us concentrate our attention  to  the 
stability  algorithms.  Algorithms  which  treat  nonlinear  stability  problems as 
a  sequence  of  eigenvalue  problems  are  described  in  recent  papers  (e.g.  ref. 
10 - 12). Let us now  use  the  normalized  determinant of the  current  tangent 
stiffness  matrix,  detnE,  and  the  current  stiffness  parameter, CS, recently 
introduced  by  Bergan  (ref.  3,4)  as  indicators  for  the  stability  behaviour of 
the  structure  during  the  lowering  of  the  rigid  roller. It is  a  well-known  fact 
that at the  stability  limit,  X-Xcrit (X ... load  amplifier,  Xcrit ... critical 
load amplifier),  the  determinant  of  the  tangent  stiffness  matrix  vanishes: 

lim det &(X) = 0. 
A-Xcrit 



T h i s   c r i t e r i o n   h o l d s   f o r   b o t h   b u c k l i n g  as w e l l  as snap-through  because it 
is based on t h e   e x i s t e n c e  of a n o n t r i v a l   s o l u t i o n  du  o f   t h e   e q u a t i o n  - 

* 
- K ( X c r i t ) -  f& = 0, 

v a l i d  a t  t h e   b i f u r c a t i o n   p o i n t   a n d  a t  the  snap-through  point .  

One can   d i s t inguish   be tween  buckl ing   and   snap- through  by   cons ider ing  
t h e   d e t e r m i n a n t   a p p r o a c h e s   z e r o   ( r e f .   5 , l O ) :   I n   t h e   b u c k l i n g   c a s e  

h o l d s .   I f   t h e   d e t e r m i n a n t   b e h a v e s   a c c o r d i n g   t o  

1 i m  

A-Acrit 

- = --a, 
a de t K  

ax 

how 

( 5 )  

snap-through is  i n d i c a t e d .  

The Gauss   e l iminat ion  procedure  which is  implemented i n  ADINA ( r e f .  6 )  i s  
used i n   c o m b i n a t i o n   w i t h   t h e   L D g f r a c t o r i z a t i o n   ( r e f .   1 3 )   t o   s o l v e   t h e   f i n i t e  
e lement   equa t ion   sys tem  dur ing   the   incrementa l - i te ra t ive   ana lys i s .   Thus ,  it is 
a l m o s t   n o   e f f o r t  t o  c a l c u l a t e   t h e   d e t e r m i n a n t  of t h e  nxn s t i f f n e s s   m a t r i x   u s i n g  
the f o l l o w i n g   r e l a t i o n s :  

K = L D L  , T 
- ”_ 

- L is a l o w e r   u n i t   t r i a n g u l a r   m a t r i x   a n d  is a diagonal   matr ix .   Hence,  

d e t  = d e t  2 = IT D . n 
i=l  ii ( 8 )  

T h i s   d e t  K is normalized so t h a t   d e t ,  K(A=O) = 1. A t  e ach   l oad   l eve l  a t  which 
a f u r t h e r c o n t a c t   e l e m e n t  is  a c t i v a t e d ,   t h e   c u r r e n t   g l o b a l   s t i f f n e s s   m a t r i x  
increases   suddenly   due  t o  the   added   con t r ibu t ion   o f   t he   ac t iva t ed   con tac t  
e l e m e n t .   I n   o r d e r   t o   a v o i d   d i s c o n t i n u i t i e s   i n   t h e   d e t & ( A )   c u r v e   t h e   c u r r e n t  
de tn   va lues  are smoothened by a fu r the r   no rma l i z ing   p rocedure   wh ich   l eve l s   t he  
d e t ,   v a l u e   j u s t  af ter  a jump t o   t h a t  which  appeared  immediately  before it. I t  
migh t   be   p rope r   t o   de l e t e  a l l  c o n t r i b u t i o n s   r e l a t e d   t o   t h e   c o n t a c t   e l e m e n t s  
f r o m   t h e   c u r r e n t   s t i f f n e s s   m a t r i x   i f   d e t n K ( A )  is  c a l c u l a t e d .   T h i s  would 
r e p r e s e n t   t h e   d e t e r m i n a n t   b e h a v i o u r   o f   t h e   s h e l l   i t s e l f   a n d   t h e   c o n t a c t  would 
on ly   con t r ibu te   t o   t he   l oad   vec to r   on   t he   r i gh t -hand   s ide   o f   t he   i nc remen ta l  
f i n i t e   e l e m e n t   e q u a t i o n s .  

The c u r r e n t   s t i f f n e s s   p a r a m e t e r ,  CS ,  has   the  fol lowing  meaning (i i 

denotes   the  increment   number) :  It r e p r e s e n t s   t h e   c u r r e n t   s t i f f n e s s  of t h e  
s t r u c t u r e  as be ing  a r e l a t ion   be tween  a load  increment   and  the  corresponding 
displacement  increment.   Assuming  proportional  loading  one  can  express 

i i - R = X S e f .  (9) 

i 

r e f e r e n c e   l o a d   v e c t o r .   R e l a t i n g   t h e   c u r r e n t   s t i f f n e s s   t o   t h e   i n i t i a l   s t i f f n e s s  
R d e n o t e s   t h e   e x t e r n a l   l o a d   v e c t o r  a t  l o a d   l e v e l  A ,  Gef is t h e   c o n s t a n t  

i 
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( W i t h  (< 1) CS can   be   de f ined  as 
i 

i i-1 i i-1 i cs = ( x- W I I  11.- UII 1 1  x/II u II 
(10) 

us ing   the   Eucl idean  norm o f   t he   i nc remen ta l   d i sp l acemen t   vec to r   t o  scale t h e  
r e l a t i o n s .  

The combination  of the d e t e r m i n a n t   a n a l y s i s   a n d   t h e   c u r r e n t   s t i f f n e s s  
parameter c a l c u l a t i o n   o f f e r s  a good t o o l  t o  p r e d i c t   t h e   s t a b i l i t y  l i m i t ,  X c r i t l  
as w e l l  as t h e   i n s t a b i l i t y  mechanism ( i . e .   buck l ing   o r   snap - th rough)  as shown 
i n   r e f e r e n c e  14. 

DISCUSSION OF THE FESULTS 

Figure  6 shows t h e   l o a d   d i s p l a c e m e n t   p a t h   o f   t h e   i n i t i a l   c o n t a c t   p o i n t  
(node A i n   f i g u r e  4 ) ,  t he   no rma l i zed   de t e rminan t   o f   t he   s t i f fnes s   ma t r ix ,  
d e t n ( ( h ) ,   a n d   t h e   c u r r e n t   s t i f f n e s s   p a r a m e t e r ,  C S ( h ) .  The results o f   t he  
a n a l y s i s   o f   t h e  same s h e l l   l o a d e d  by a concen t r a t ed   l oad   i n  A are a l s o  
p r e s e n t e d   i n   f i g u r e  6 as a comparison. The fo l lowing   f ac t s   can   be   obse rved :   In  
both   cases  a s t a b i l i t y  l i m i t  is reached  and  snap-through  of  the wave takes 
p lace .  The s h e l l   l o a d e d   b y   t h e   r o l l e r   b e h a v e s   s i g n i f i c a n t l y  stiffer than   t he  
po in t - loaded   she l l .   Th i s  is caused   by   t he   a l t e r ing   l oad ing   cond i t ions   due   t o  
t h e   i n c r e a s i n g   c o n t a c t  domain as expla ined   above .   In   the   concent ra ted   load  
approach, a ho r i zon ta l   t angen t   o f   t he   l oad   d i sp l acemen t   pa th  is reached  before  
c o n s i d e r a b l e   p l a s t i f i c a t i o n   t a k e s   p l a c e .  I n  t h e   c o n t a c t   s o l u t i o n ,   p l a s t i c  
domains  appear i n   t h e   v i c i n i t y   o f   t h e   c o n t a c t   a r e a   l o n g   b e f o r e  a s i g n i f i c a n t  
s t i f f n e s s  loss ( i .e .  a r ap id   dec rease   o f  C S )  can  be  observed. 

I n   f i g u r e  7 the  deformed s ta te  of   the   she l l   immedia te ly   before   snap- through 
is  shown. One can see t h a t   t h e   c o n t a c t  domain  between r o l l e r   a n d   s t r i p  is  
considerable .   Furthermore,  it i s  i n t e r e s t i n g   t o   n o t i c e   t h a t   t h e   i n i t i a l   c o n t a c t  
p o i n t  A belongs no longer  t o  t h e   c o n t a c t   a r e a .  

CONCLUSION 

From these   cons idera t ions   one   can   conclude   tha t   neglec t ing   the   change   of  
loading  condi t ions  due  to   deformation  dependent   contact   condi t ions may l e a d   t o  
a n   u n n e g l i g i b l e   e r r o r   e v e n   i f   i n i t i a l l y   c o n c e n t r a t e d   l o a d   c o n d i t i o n s  are 
j u s t i f i e d .  
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Figure 1.- The  circular arch loaded by concentrated load directly (a) 
or  via rigid plate (b) . 
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Figure 5.- Schematic  sketch of the  contact  element  material  behaviour. 
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Figure 6.- Results of the  analysis of the wavy s t r ip   p la te   ob ta ined  by 
(a)  solving  the  contact problem and (b)  concentrated  load  approach. 
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Figure 7.- Undeformed  shell and configuration immediately before snap-through. 
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A  PROPOSED  GENERALIZED  CONSTITUTIVE  EQUATION  FOR  NONLINEAR 

PARA-ISOTROPIC  MATERIALS* 

K.K. Hu, S.E.  Swartz  and  C.J.  Huang 
Department  of  Civil  Engineering 

Kansas  State  University 
Manhattan,  Kansas 

INTRODUCTION 

With  the  advent  of  finite  element  models  of  varying  complexity  the  focus 
of  solutions  to  problems in solid  mechanics  has  shifted  very  strongly  into  the 
direction  of  more  accurate  material  description.  This  is  especially  true  for 
materials  for  which  strength  characteristics  vary  widely  with  state  of  stress. 
In  particular,  concrete  which  is  non-isotropic  at  any  level  of  deformation  and 
is  also  non-linear in terms of stress-strain  relationships  has  been  singled  out 
for  intensive  study.  This  includes  work  on  constitutive  relations  (refs. 1 to 
51, and  failure  (refs, 3 , 4 ,  and 6 to 15). 

Related  developments in failure  theories are  those  included in references 
16 to 25. 

This  list  is  by  no  means  exhaustive  but  formed a background  basis  which  led 
to  the  model  proposed in this  paper. In particular,  the  developments in the 
areas  of  maximum  deformation  theory  and  the  Von  Mises-Hencky  theory  provided 
motivation  for  the  concept  used  here  (ref. 26). 

FAILURE  SURFACE 

The proposed  generalized  constitutive  equation  is an extension  of  the  work 
of Hu and  Swartz  (26) on the  study  of  the  failure  of  materials so that  for  any 
kind  of  material in any  state. uf stress  its  mechanical  behavior can be  charac- 
terized  by  a  single  functional.  According  to  the  theory,  a  material  failure 
initiates when the  state  of  stress  at  a  point  is  such  that  the  following  func- 
tional  reaches  a  threshold  value  F : 

0 
O 1  O 2  a 3  

aJ2 [ E ( o l ) - % q + E ( o j )  
11 (0 fC* ft) 

F(Z) = c t  C t + (l-a) 
2 b f  Of - ‘Of - Of 1 J1l t c  

Ef (Of + J1> + pEf (of - J1) c t  

(1) 

* This  research  reported  herein  was  supported  in  part  by  the  National  Science 
Foundation,  Grant  No.  ENG  78-07829. 
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._ . .. . .. . . . " 

In  this  equation 

a = a  material  related  scalar  factor  which  is  determined  by  experi- 
mental  data. 

J 1 = o  + o  + a  

J2 = (al - a2)2 + (a2 - a3) + (a3 - Dl) . 
1 2 3' 

2 2 

al, 02, o3 = the  components  of  principal  stresses,  tensile  stress ha? positive 
value. A vector of principal  stresses  is  expressed  by a. 

a o = the  absolute  value  of  the  ultimate  stresses  of  the  material  under C 

' uniaxial  tension  and  compression,  respectively. 

E E = the  absolute  values  of  strain  component  in  the  direction  of  uniaxial C 

' force  when  stress  reaches  the  corresponding  ultimate  value. 

E(o) = the  secant  modulus of elasticity  of  the  material  subjected  to  uni- 
axial  stress  (tension  or  compression  as  appropriate). 

p = the  Poisson's  ratio  of  the  material  (related  to  stress  level). 

CONSTITUTIVE  EQUATIONS 

Non-linear  response  will  take  place  when  the  increment  of  the  functional  is 
in  an  increasing  manner  and  its  value  is  beyond  some  threshold  level  (possibly 
zero). The  material  will  be  fractured at+ points  where  the  state  of  stress 
reaches  the  surface of failure,  i.e., F(o) = 1. 

Between  the  initial  state to fracture,  the  response  is  assumed to be  charac- 
terized  by  Drucker's (17) theorem of orthogonality  with  the  use  of  the  functional 
proposed  by  the  generalized  failure  theory,  eqn. (1). That is, if  the  increment 
of principal  strain  components  is  decomposed  into  linear  and  non-linear 
increments, 

{dE} = {dEe) + idsp}, (2) 

the  non-linear  part  is  characterized by 

where 

G(;) = a  scalar  function  of  stresses, 

{g(z)} = a  unit  vector  of  the  gradient of the  functional  at  the 
point  of  interest. 

Note  that G values  (under  uniaxial  loading)  can  be  determined  by  Some  stress- 
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s t r a i n   r e l a t i o n s h i p .  In t h e   g e n e r a l  case, e s p e c i a l l y   f o r   t h o s e  materials l i k e  
g l a s s   o r   c o n c r e t e ,   t h e  G f u n c t i o n  i n  u n i a x i a l   t e n s i o n   d i f f e r s   f r o m   t h a t   o f   u n i -  
axial   compression  remarkably.   Therefore  a weighted  average is  proposed.  Accord- 
i n g  t o  t h i s ,   t h e   r e l a t i o n s h i p   b e t w e e n   t h e   v e c t o r s   a n d   p r i n c i p a l  strain increment 
a n d   t h e   p r i n c i p a l  stress increment is  proposed t o  b e   c h a r a c t e r i z e d  by the   fo l low-  
i n g   g e n e r a l i z e d   c o n s t i t u t i v e   e q u a t i o n :  

I n   t h i s  E = t h e   m o d u l u s   o f   e l a s t i c i t y   o f   t h e  material, LVF-I= t h e  row vec tor   o f  

t h e   g r a d i e n t  of t h e   f u n c t i o n a l  a t  t h e   p o i n t   o f   i n t e r e s t ,  and t h e   f u n c t i o n  G ( Z )  
is  c a l c u l a t e d  by 

which is  a weighted   average   accord ing   to   the   va lues   o f   the   cor responding   pr inc i -  
p a l  stress components. G .  (a. ) depends  on  the  value of t h e   i - t h   u n i a x i a l   p r i n c i -  

1 1  
p a l  stress and i s  ca l cu la t ed   acco rd ing   t o  

where g is t h e   i - t h  component of t h e  unit vec tor   {g} .  
i 

I f  U f C  = U E = E and a = 1 is s e l e c t e d ,   t h e   p r o p o s e d   f a i l u r e   t h e o r y  C 
f Y  f  f 

ag rees   w i th   t he  Von Mises' t h e o r y   a n d   t h e   g e n e r a l i z e d   c o n s t i t u t i v e   e q u a t i o n  
r e d u c e s   t o   t h e  w e l l  known P r a n d t l - R e u s s   s t r e s s - s t r a i n   r e l a t i o n   ( r e f s .  4 , l l ) .  
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NUMERICAL EXAMPLE 

Applying  the  proposed  theory  to  plain  concrete  for  the  purpose  of  illustra- 
tion  equ. (1) is.  modified  to  read 

F = -  a J2 + (1-a) b1+P (a2+u3) 1 (af t+(sfc) 
t C (8) 

afcaft - (af -af )J1 a c(l+v) + (af  -paf  )J1 c t  
f f  

The  implication  used  is an invariant  modulus  of  elastic2ty  and  for  concrete, so- 
called  initial  yield  occurs  at  about .45 f’ . 

C 

Using  test  data  for  concrete (3)  the  level  surfaces  of  the  functional,  the 
stress-strain  curves  of  uniaxial  tension  and  compression  tests  and  the  variations 

of G [F(ai)]  and  G-[F(cri)] are  shown in Figs. 1-3. The  best  value  of a for 

concrete  is 0.46 which  has  been  used  in  these  curves. 

+ 

Note  in Fig. 1 the  shape of the  curve in the  tension-compression  zone  follows 
very  closely  the  shape  of  the  experimental  curve  obtained  by  Kupfer,  Hilsdorf 
and  Rusch ( 3 ) .  The  stress-strain  curves  presented  in  Figs. 2 and 3 were obtained 
using  testing  equipment  described  in  Ref. 27. Using  these  data,  Equations 8 for 

F  and  7a  and  7b  for G+ and G- were evaluated  numerically to obtain  the  curves 
displayed. 

CONCLUSIONS 

A proposed  constitutive  model  for  non-linear  materials  has  been  presented. 
The  primary  virtues  of  the  model  are  its  logical  combination  of  distortion  states, 
inherent  simplicity  and  generality. 

Results  presented  for  the  model  applied  to  concrete  show  good  agreement  with 
published  experimental  data  for  failure.  The  model can be readily  incorporated 
into  existing  computer  codes  provided  sufficient  experimental  supportive  data 
are  available. 

The  proposed  constitive  equation  is  presently  being  utilized  in  the  develop- 
ment  of  a  finite  element  code  for  determination  of  unstable  crack  growth  and 
stress  intensity in concrete  beams. 
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Figure 3.- Data of uniaxial compressive test of concrete. 
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Figure 2.- Data of uniaxial   tensi le  test of concrete. 
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FINITE ELEMENT ANALYSIS 

OF HYPERELASTIC STRUCTURES 

Farhad  Tabaddor 
B .F .Goodrich 
Akron,  Ohio 

SUMMARY 

Most h y p e r e l a s t i c  materials are t r e a t e d  as i n c o m p r e s s i b l e   o r   n e a r l y  
i n c o m p r e s s i b l e   i n   a n a l y t i c a l   a p p r o a c h .  The u s e  of t h e   p e n a l t y   f u n c t i o n ,   t o  
a c c o u n t   f o r   n e a r   i n c o m p r e s s i b i l i t y ,  i s  d i scussed  and  compared t o   t h a t  of 
Lagrange   mul t ip l ie r .  A scheme t o   u s e   L a g r a n g e   m u l t i p l i e r ,   w i t h o u t   h a v i n g  
t.o treat i t  as unknown, is a l s o   p r e s e n t e d .  

INTRODUCTION 

I n   t h e   v a r i a t i o n a l   f o r m u l a t i o n  of t he   f i n i t e   e l emen t   p rob lems  of 
i ncompress ib l e   med ia ,   t he   i ncompress ib i l i t y   cond i t ion  i s  in t roduced   th rough 
t h e   u s e  o f   L a g r a n g e   m u l t i p l i e r   ( 1 , 2 ) .   T h i s   m u l t i p l i e r  is  a n   a d d i t i o n a l  
unknown sca l a r   func t ion   wh ich   canbeacconmoda ted   i n   t he   d i sc re t e   mode l  
by d isp lacement   shape   func t ions   o r  by similar methods.  The  procedure re- 
s u l t s   i n   a n   i n c r e a s e   i n   t h e  number of unknowns. 

The i n c o m p r e s s i b i l i t y   c o n d i t i o n ,   a s i d e  f rom  be ing   inconvenient   in  
f i n i t e   e l e m e n t   a n a l y s i s ,  is  an   approx ima t ion   fo r   rubbe r l ike  materials. 
Such  approximation  becomes  increasingly less a c c u r a t e  as the   pe rcen tage  
o f   ca rbon   b l ack   i nc reases   i n   t he   rubbe r  compound ( 3 ) .  The exact enforcement 
o f   i ncompress ib i l i t y  i s  t h e r e f o r e   n o t   a c t u a l l y   r e q u i r e d .  

I n   t h i s  work t h e   n e a r   i n c o m p r e s s i b i l i t y  i s  accounted   for   by   use   o f   the  
p e n a l t y   f u n c t i o n  ( 4 )  i n   t h e   e x p r e s s i o n   f o r   t h e   s t r a i n   e n e r g y   f u n c t i o n .  
The c o n s t i t u t i v e   e q u a t i o n s  are then   ob ta ined   in   incrementa l   form.   This  
i s  m o s t   s u i t a b l e   f o r  a n o n l i n e a r   f i n i t e   e l e m e n t .  The i n c o m p r e s s i b i l i t y  
i s  shown t o   b e   c l o s e l y   s a t i s f i e d   f o r   l a r g e   p e n a l t y   n u m b e r s .  The 
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c o n s t i t u t i v e   r e l a t i o n s   w i t h   p e n a l t y  number are compared w i t h   t h e  exact 
s o l u t i o n   f o r   t h e   i n c o m p r e s s i b l e  case. It is shown t h a t   f o r  a given  accuracy 
of t h e   s o l u t i o n ,   t h e   p e n a l t y  number m u s t   v a r y   i n   t h e   c o u r s e   o f   f i n i t e  
e lement   solut ion  f rom  element   to   e lement   and  f rom  one  increment   to   the 
next .  Some n u m e r i c a l   r e s u l t s  are p r e s e n t e d   t o   i l l u s t r a t e   t h e s e   p o i n t s .  
A s imple scheme t o   u s e   v a r i a b l e   p e n a l t y  number i s  a l s o   p r o p o s e d .   F i n a l l y  
the   i nc remen ta l  form of c o n s t i t u t i v e   e q u a t i o n s   f o r   t h e  case of   incompressible  
material is de r ived   f rom  the   s t r a in   ene rgy   func t ion   w i th   t he   Lagrange  
m u l t i p l i e r .  An a l t e r n a t i v e   p r o c e d u r e  is  then   proposed   which   does   no t   requi re  
t rea tment   o f   the   Lagrange   mul t ip l ie r  as unknown. 

BASIC EQUATION 

The s t r a i n   e n e r g y   f u n c t i o n  W f o r   i s o t r o p i c   h y p e r e l a s t i c  materials 
has   t he   fo l lowing  form: 

\fiere 11, 1 2 ,  and h a r e  the   t h ree   i nva r i an t s   o f   Green-Lagrange   s t r a in   t enso r  
and are r e l a t e d   t o   s t r a i n  components, fo r   t he   ax i symmet r i c   ca se ,  as fo l lows:  

I 2  = 3 + 4 ( Y 1 1  + Y 2 2  + Y 3 3  + Y 1 1  Y 2 2  + Y 1 1  Y 3 3  + t t t t t  t t  

t t  t 
Y 2 2  Y 3 3  - Y122) 

t t t 
Y11 ,  Y22and Y 3 3  are t h e   c u r r e n t   v a l u e s  of s t r a i n s .   I n   t h i s  work, o n l y   t h e  

axisymmetric case i s  considered.  The discussion,   however ,   can  be  extended Co 
the three-d imens iona l  case w i t h o u t   a n y   d i f f i c u l t y .   I n   t h e   a x i s y m m e t r i c  r,ase, 
t h e   s t r a i n   i n v a r i a n t s  are r e l a t e d   t o   c u r r e n t   d i s p l a c e m e n t s  by 

1 98 



x2 i s  t h e  axis of  symmetry  and ~ 1 x 2  i s  t h e   a x i s m e t r i c   p l a n e .  The 
c u r r e n t   d i s p l a c e m e n t s   p a r a l l e l   t o  x1 andxz axes are denoted  bytul  and U P  

r e s p e c t i v e l y .  

The second  Piola-Kirchoff stress tensor  components T a t  c u r r e n t  
t i j  

time, can   be   ob ta ined   f rom  the   fo l lowing   re la t ions  

To o b t a i n   t h e   i n c r e m e n t a l  form of c o n s t i t u t i v e   e q u a t i o n s  we d e f i n e  

- t + A t  t 
Yi j  - Yij  - i j   i , j  = 1,2,3 
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where T and Y..are inc remen ta l  stress and   s t r a in   componen t s   r e spec t ive ly .  
The i n c r e m e n t a l   s t r e s s - s t r a i n   r e l a t i o n s  may  now be   ob ta ined   f rom  the  
p r e c e d i n g   e q u a t i o n s ,   a f t e r  some a lgeb ra i c   man ipu la t ions ,  as 

i j  
1J 

where 

i, j , e =  1 , 2 , 3  

i , j . .  .= 1 , 2 , 3  

Repeated  indices  imply  summation  convention. 

STPJ.IN ENERGY AND PENALTY  FUNCTION 

The s t r a i n   e n e r g y   f u n c t i o n   f o r   n e a r l y   i n c o m p r e s s i b l e  materials can  be ob- 
t a i n e d  by' a series expansion of t h e   s t r a i n   e n e r g y   f u n c t i o n   a b o u t  (13-1) 
a n d   r e t a i n i n g   t h e   l e a d i n g  terms 

We o n l y   c o n s i d e r   t h e   f o l l o w i n g   s p e c i a l  case 

where H, and H, are cons tan t s .  Many d i f f e r e n t   s t r a i n   e n e r g y   f u n c t i o n s  
have  been  proposed i n   t h e   l i t e r a t u r e  by fu r the r   expans ion   o f  W, and 

200 



r e t a i n i n g   t h e   l e a d i n g  terms. A general   form  covering  the  proposed 'models  i s  

" = ij=o c cij (11-3)i (12-3)' + H l ( I 3 - 1 )  + J h ( I 3 - 1 )  

where Cij are cons t an t s .  The cons t an t  H, i s V n o t   i n d e p e n d e n t   i f   t h e  undeformed 
state is  stress f r e e ,   a n d   s h o u l d   s a t i s f y   t h e   f o l l o w i n g   r e l a t i o n  

coo = 0 

We may  now cons ide r  H2 as a p e n a l t y  number t o   h a n d l e   t h e   i m c o m p r e s s i b i l i t y .  
The s a t i s f a c t i o n  o f   i n c o m p r e s s i b i l i t y   r e q u i r e s  H 2  t o   a p p r o a c h   i n f i n i t y .  
F o r   p r a c t i c a l   p u r p o s e t h e   i n c o m p r e s s i b i l i t y   c a n   b e   a p p r o x i m a t e l y   s a t i s f i e d  
by n o t   t o o   l a r g e   v a l u e s  of H 2  . The incompressibi l i ty   can,   however ,   be  
s a t i s f i e d  more a c c u r a t e l y  as H 2  g e t s   l a r g e r .  

I n   f i n i t e   e l e m e n t   a n a l y s i s ,   h o w e v e r ,   t h e   l a r g e   v a l u e s   o f  H 2  can 
l e a d   t o   c o m p u t a t i o n a l   p r o b l e m s   d u e   t o   o v e r r i d i n g   s t i f f n e s s a s s o c i a t e d   w i t h  

H Z  , as d i s c u s s e d   i n  ( 4 ) .  A scheme t o  employ t h e   v a r i a b l e  H2 , depending 
on t h e   l o c a l   d e v i a t i o n s   f r o m   i d e a l   i n c o m p r e s s i b i l i t y ,   c a n   t h e r e f o r e   i m p r o v e  
t h e   s o l u t i o n  as  d i scussed  later. On t h e   o t h e r  hand we  can   r ecove r   t he  
c l a s s i c a l   a p p r o a c h  by l e t t i n g  H Z  be   ze ro   and   t r ea t ing  H I  as the  unknown 
Lagrange   mul t ip l ie r  

1 3 - 1 = 0  

U n l i k e   t h e   p e n a l t y   f u n c t i o n ,  i s  then  considered as a n   a d d i t i o n a l  unknown 
and i s  e q u i v a l e n t   t o   h y d r o s t a t i c   p r e s s u r e .  

ONE DIMENSIONAL  STRESS-STRAIN 
RELATION 

To compare   the   express ions   (16)   and   (18)   and   to  see the   behaviour  of t h e  
material w i t h   p e n a l t y  number, w e  c o n s i d e r   t h e  case of  one  dimensional stress- 
s t r a i n   r e l a t i o n .  L e t  us cons ider   an  axisymmetric medium s u b j e c t   t o   t h e  
f o l l o w i n g   u n i f o r m   s t r a i n   f i e l d :  
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Y22 = Y 

where Y and 7 are cons tan t s .  L e t  u s f u r t h e r  assume  the  s implest   form of 
W 1  s u c h   t h a t  

F o r   s t r a i n   e n e r g y   f u n c t i o n  (18), t h e   s t r e s s - s t r a i n   r e l a t i o n s  are 

(1 + 2y) (1 + 2 3 2  - 1 = 0 

We choose X , so t h a t  ' r l1 and T 3 3  are bo th   ze ro  t o  s i m u l a t e   t h e   u n i a x i a l  
l o a d i n g .   T h i s   c h o i c e   w o u l d   t h e n   l e a d   t o   t h e   f o l l o w i n g   s t r e s s - s t r a i n   r e l a t i o n  
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TT' l z l C  = [ 1 - (1 + 2y)-3/2] (2c1 + 2 C2(l  + 2y ) -112) 
The  Cauchy stress 0 i s  t h e n   r e l a t e d   t o  -c22 by 2 2  

022 = ( 1   + 2 y )  T22 (24) 

The o n e - d i m e n s i o n a l   s t r e s s - s t r a i n   r e l a t i o n   f o r   t h e  case of p e n a l t y  
number i s  now obtained  from  (16) 

Fol lowing  the same procedure,  we a r r i v e  a t  the   fo l lowing   one   d imens iona l  
c o n s t i t u t i v e   e q u a t i o n  

where 7 is  now r e l a t e d   t o  H 2  by 
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2H2 1 1  + 2 3  (1 + 2y) - 11 = 

The a b o v e   e q u a t i o n   m u s t   b e   s a t i s f i e d   f o r  a l l  va lues   o f  H2 . It can  be 
s e e n   t h a t ,   f o r  H ,  a p p r o a c h i n g   t h e   i n f i n i t y ,   t h e   a b o v e   e q u a t i o n   d e g e n e r a t e s   t o  

(1 + 21/)2 (1 4- 2 y )  - 1 = 0 (28) 

which i s  t h e   e x p r e s s i o n   o f   i n c o m p r e s s i b i l i t y   c o n d i t i o n .   I n   t h i s  case 
equat ion  ( 2 6 )  would become i d e n t i c a l   t o   e q u a t i o n  ( 2 3 ) .  

INCOMPRESSIBILITY AND PENALTY NUMBER 

We c o n s i d e r   t h e  case where   incompress ib i l i ty  is  t o   b e   s a t i s f i e d   w i t h i n  
some p resc r ibed   accu racy  E ; t h a t  i s  we r e q u i r e  

For n u m e r i c a l   i l l u s t r a t i o n ,   c o n s i d e r   t h e  case where 

1 = 4  C 

c2 

Combining equa t ions  ( 2 7 )  t o  ( 3 0 ) ,  w e  arr ive a t  t h e   f o l l o w i n g   r e l a t i o n  

w-here 
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x = 1 + 2 y  

H =  2H 2 

c2 

and E << 1 

For small v a l u e s  of E , t h e   r e l a t i o n   ( 3 1 )   c a n   b e   f u r t h e r   s i m p l i f i e d   t o  

HE = 6 - z  - ~ y 2  1 x + 4  
( 3 3 )  

The s t r e s s - s t r a i n   r e l a t i o n  of t he   equa t ion  (23)  i s  p l o t t e d   i n   E i g u r e   ( 1 ) .  
The v a r i a t i o n  of HE as f u n c t i o n  of s t r a i n  i s  p l o t t e d   i n   E i g u r e  ( 2 ) .  
It can   be   seen   tha t  as y i n c r e a s e s ,  H mus t   a l so   i nc rease   acco rd ing ly ,  
t o   m a i n t a i n   t h e  same accuracy  E: on i n c o m p r e s s i b i l i t y   c o n d i t i o n .  It can 
a l s o   b e   n o t e d   t h a t   h i g h e r   v a l u e s  of H are r e q u i r e d   i n   c o m p r e s s i o n   t h a n   i n  
tens ion .  The r e l a t i o n  (26)  may  now b e   w r i t t e n  as fol lows:  

Comparing ( 3 4 )  and ( 2 3 ) ,  i t  i s  observed   tha t   the  stress f o r  a n e a r l y  incom- 
p r e s s i b l e  model i s  always less t h a n   t h a t  of an  incompressible   model ,   for   the 
same s t r a in .   Th i s   d i f f e rence ,   however ,   depends  on t h e  E and  approaches 
zero  as E approached  zero,  o r  H a p p r o a c h e s   i n f i n i t y .  The re la t ive e r r o r ,  
however, i s  

L 
i n c  

For a f i x e d  H,  E i n c r e a s e s   w i t h  y b u t   t h e  relative e r r o r   i n   t h e  stress 
i s  governed  by ( 3 5 )  which i s  less s e n s i t i v e   t o  a v a r i a t i o n   i n  H . 
El imina t ing  E between (35) and ( 3 3 ) ,  we o b t a i n  
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The above  equat ion relates the  magni tude of H t o  level of s t r a i n   f o r  
a p r e s c r i b e d   e r r o r  e . The equa t ion  (33) o r  ( 3 6 )  may serve as a n  
approximate  method  of  updating H, i n  a problem  of  combined stresses, f o r  
improved  accuracy i n   i n c o m p r e s s i b i l i t y   o r  stress c a l c u l a t i o n .   F u r t h e r  
work is, however ,   requi red   to   deve lop  a more v i g o r i o u s  scheme 
i n   t h e   g e n e r a l  case. 

INCREMENTAL  FORM  OF LAGRANGE MULTIPLIER 

We now c o n s i d e r   a n   a l t e r n a t i v e   a p p r o a c h   t o   i n c o m p r e s s i b i l i t y   p r o b l e m s .  
L e t  u s   c o n s i d e r   t h e   f o l l o w i n g   s t r a i n   e n e r g y   f u n c t i o n  

w = Wl(I1, 1 2 )  + x (13-1) 

1 3 - 1  = 0 

where x is  t h e   L a g r a n g e   m u l t i p l i e r .  The  second  Piola-Kirchoff stresses 
can now be   ob ta ined  as f o l l o w  

where tx i s  t h e   c u r r e n t   v a l u e   o f  x . The i n c r e m e n t a l   s t r e s s - s t r a i n  
r e l a t i o n s  may be  ob.tained  by a procedure similar t o   t h a t   u s e d   i n   t h e  
preceding   pages .   This   would   l ead   to  
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x =  - x  t + A t x  t 

where X is  the   i nc remen t   i n   t he   Lagrange   mu l t ip l i e r   be tween  two consecut ive  
s t e p s   i n   t h e .   i n c r e m e n t a l   s o l u t i o n .  The incrementa l  form of i n c o m p r e s s i b i l i t y  
cond i t ion  i s  

m u l t i p l y i n g   b o t h   s i d e s  of (39) by Yif3 and  use of (411, l e a d s   t o  

or 

a 2~ 
'ij k l  

- - 
a Yi j  a Y U  t t 

207 



C 

The fo l lowing  scheme may  now b e   c o n s i d e r e d   f o r   t h e   s o l u t i o n   o f  
incompress ib le  materials w i t h o u t   t h e   n e e d   f o r   i n t r o d u c i n g   t h e  unknown Lagrange 
m u l t i p l i e r .   I n   t h e   p r o c e s s  of inc remen ta l   so lu t ion ,   t he  last  term i n   t h e  ' 

r i g h t  hand  s ide  of   equat ion  (39)  i s  ignored.  A t  the   end  of   each  increment ,  
t X  c an   be   upda ted   f rom  r e l a t ion   (43 ) .   The re  is, therefore ,   no  need  of  
t r e a t i n g  x a s  an  independent  unknown. No numerical   work,  however,   has 
b e e n   c a r r i e d   o u t   w i t h   t h i s   a l t e r n a t i v e   p r o p o s e d  scheme a t  t h i s  time. 
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Figure  1.- One-d imens iona l   s t r e s s - s t r a in   r e l a t ion .  
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Figure  2.- V a r i a t i o n  of HE with. s t r a i n .  
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SUMMARY 

A method has been developed for contact problems which may be  either  frictional or 
frictionless  and may involve extensive sliding between deformable bodies. It i s  based  on an 
assumed stress hybrid approach and on an  incremental variational  principle for  which  the 
Euler's equations of the functional  include  the  equilibrium and compatibility conditions at 
the  contact surface. The tractions at an assumed contact surface are  introduced as Lagrang- 
ian  multipliers i n  the formulation. It has been concluded from the results of several example 
solutions that  the  extensive sliding  contact between deformable bodies can be solved by  the 
present  method. 

INTRODUCTION 

The finite element method has been applied by many  authors for solving  solid mechan- 
ics problems which  involve undetermined  contact surfaces. They include  the  relatively 
simple Hertz  contact problem for which there i s  no sliding between  contact surfaces and the 
small displacement model can be used [ l ,  21. They also include problems involving  relative 
sliding  either  with  friction or i n  frictionless  conditions [31. Existing solutions are based 
largely  on the  conventional assumed displacement finite element model. 

The present paper i s  based on an assumed  stress approach and  on  an  incremental vari- 
ational  principle for which  the Euler's equations of the functional  include  the  equilibrium 
and compatibility conditions at the  contact surface. An assumed contact surface is  inserted 
between bodies in  contact and i s  divided  into elements. Contact  tractions  are  independently 
assumed i n  terms of unknown values of such  nodes of the contact elements. Thus, a finite 
element equation  includes  nodal displacements and nodal contact  tractions as unknown. 
This paper i s  to present the  variational  principle and the corresponding finite element imple- 
mentation  for this problem. 
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SYMBOLS 

Coordinates before  deformation 

Displacements defined  within  an  element 

Displacements defined  along element boundaries 

Tractions 

Contact  tractions 

Coefficient  of  friction 

The whole boundary of the  body 

The contact surface 

The portion  of  the boundary  where  displacements are  prescribed 

The portion  of  the boundary  where  loads are  applied. 

Volume 

Strains 

Stresses 

Quantity  tangential to the  contact surface 

Quantity normal to the contact surface 

Matrix 

Tensor 

Prescribed quantity 

Quantity  pertinent to  body A 

Quantity  pertinent to body B 

Quantity  pertinent  to bodies A and B 

Quantity  pertinent  to element N 

incremental auantitv 
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GENERAL INCREMENTAL ASSUMED STRESS FORMULATION FOR CONTACT PROBLEM 

The requirements for contact (the conditions  of  contact)  are as follows: 

( 1 )  At the  point  of contact between two bodies tractions  exerted 
on each other are  the same in  magnitude and are opposite i n  
directions. 

(2) The normal tractions  are compressive and the tangential 
tractions  counteract relative movement of the bodies. 

(3) There should be no gap and no penetration  of  material  points 
at  the  place  of  contact. 

A B 
Consider two bodies A and B shown in  Fig. 1 with volumes V and V , and boundary 

B A B 
surfaces, a@ and 2V which are composed of portions, S,,- and Sf, and SA and S 

These two bodies share a  contact surface, S through  which  they interact. The previously 

B 
U U '  

C 
mentioned  conditions of  contact i n  incremental form are 

+  AT^) + (TB + AT B ) = 0 
n  n 

(TB  +  AT^ ) B 
S G -  + ( T ~  n +  AT^) n 
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and the signs in  Eqs. 3 and 4 are chosen  such that  tangential  tractions on this surface act  to 
restrain  the relative movement of contacting points. 

A f inite element method which i s  based on  a variational  principle  with  relaxed con- 
tinuity requirement at interelement boundaries i s  defined as a hybrid model [4]. Boland and 
Pian [5] have applied  an incremental assumed  stress hybrid method for  large  deflection 
analyses of  thin  elastic structures. The functional IT that has been derived in the refer- 
ence [5]i based on  the Updated Lagrangian coordinate system i s  used  as ;base for   der iv ing 
the  functional  for  the  present problem. 

me 

The conditions of no gap and no overlapping on t,he plac%of  contact are $traduced 
into the functional by means of Lagrangian multipliers, T + A T  and 7 + A T  . The 
functional K becomes Pmc, i.e. 

n  n S S 

mc 

AT. ( AU. - AU. dS 
-A -40 

I I 

A +B 

s C N  s C N  
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The Euler's equations  of T are 
C 

rnc 

On the contact surface S , in addition to Eqs. 5 and 6 
cN 

(TB n + ATB) n + (7 n + AT n ) = o  

Introducing frictional constraint on 7 + A? and 'i +z such that 
S S n n' 

cu 

T + A T  < + , , T  + A T  
S S - [n  -n) 

and rearranging Eqs. 11, 12,  13, 14 and 15, results i n  Eqs. 1, 2, 3, and 4. Thus, 
it has been proved that the conditions of contact are Eulers's  equations of the functional 7i' C 
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These Euler  equations are the strain displacement relations, the mechanical boundary 
condition, the stress equilibrium requirements along  the  interelement boundaries  and the 
conditions of contact. Since they are only satisfied in an average sense within an increment 
they cannot be expected to satisfy  these conditions i n  the usual sense. It is, therefore, 
necessary to consider a compatibility check, a stress equilibrium check,  and a  contact check. 

It i s  seen that Eq. 7 already has al l  of these built-in checks. The 5 t h  and 6-th 
integral terms in the  functional correspond to the equilibrium check and 7-th term to the 
compatibility check. Also, the compatibility and equilibrium checks of the contact surface 
(contact check) are easily identified, the equilibrium check being  the 8-th integral term 
and the compatibility check, the 9-th term. 

FINITE ELEMENT IMPLEMENTATION 

Since the aim of the present  work i s  to solve contact problems by the finite element 
method,  expressions arising from nonlinearities,  not due to contact, are excluded from 
equations. A technique for solving these  equations, with only  contact nonlinearities, wi l l  
be discussed here. 

Neglecting  nonlinearities not due to contact, the assumed  stress hybrid  functional, 

77 takes the form 
mc 

3 
cN 



The  stresses AS are expressed in  terms of  a  finite number of stress  parameters, A P  and 
the element boundary  displacements interpolated in terms of the nodal displacements, CJ, 
and AZ. Also, coordinates  are interpolated in terms of their nodal values. As a  solid 
continuum i s  subdivided into elements, the  contact surface is  also discretized into  finite 
number of elements referred to here as ''contact elements" with "contact nodes. 'I The con- 
tact  traction J + AI i s  interpolated in terms of i t s  nodal values, t. 

Y 

+ 
N 

Thus, interpolatbns  otthem are: A z  = P a ~ 2 ,  A: = 5 A:, lJ = q, 
A = ACJ and 1 + A$ = M i. Substituting these interpolations into Eq. lz, 

H 

v 

Y 

and defining the following matrices 

R0 L T -  T d S ,  R: 
N N = \ s h j T * [ ( g A  + ) -  (GB + gB)]dS 

A 
-E N 

IC. 

c N  

FA = \ M - L  d S ,  F L  = M - L B d S  
4N " - *  

A 

C C 

JcN JcN 

the functional, becomes 
mcN 
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in  which S i  and 5; result from  stress equilibrium checks  on S ,  and on the contact 

surface S , and RC , from the init ial mjsmatch  checks on S . N n 
0 

cN N cN 

Equation 17 contains three unknown  vectors, the incremental stress parameters AZ, the 
incremental displacements AI, and the contact stresses . Whereas, the vector are 
independent on the element level, a q  and are not. Thus, eliminating AZ from Eq. 17, 
n' becomes 

w 

mc 

Summing  up over a l l  elements and !aking the   va r ia t i ons  of t h e   f u n c t i o n a l   w i t h  
respec t   to  a q  and t ,  resulk in 

' W  r u  

where 

K hr = GjN* T tiN - 1  - S N ,  Q = x(,aN + Q i  - Ro ) u -E N * N  N 

&C 
K =  

Equation 19 represents the total assembled finite element matrix equation. 
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TECHNIQUE OF ITERATIVE SOLUTION 

Once  the  contacting bodies are  adequately constrained such that  the inverse of the 
global stiffness matrix, 5-1 i n  Eq. 19 can be  calculated, it can be used throughout the 
iteration procedure. Thus, i n  locating  the  contact surface only K needs to be recomputed 
i n  each  iteration. The global stiffness matrix 5 remains constant % uring this process.  Even 
in  the case of  material and/or large deflection nonlinearities, it i s  possible to use a modified 
Newton-Raphson method; hence the  global stiffness matrix 51 may remain constant during 
this process. 

For a two-dimensional problem, before each iteration,  the  contact surface i s  a  line, 
f ixed  in the coordinate system, but  not  to the contacting bodies. Such line i s  assumed 
known i n  order to perform the necessary integrals. But if, before  the  iteration, one has 
assumed the location  of  the  contact surface and the positions on i t  that  the  contacting nodes 
of  the bodies wi l l  occupy, then it would appear that  the  displacement  increment can be 
specified. Th is  i s  not  the case.  Instead, the problem i s  solved for  the  displacement incre- 
ments and i f  the contact surface found therefrom i s  not  coincident  with  the one  presupposed, 
a new contact surface location i s  calculated, and then  an iteration can be  followed. 

It has been found that the length  of the  contact  element  which  yields best results i s  
the same  as the  length of the contacting side of boundary elements of  the bodies. In order 
to facilitate programming, the nodes of the contact  element  are chosen to be coincident 
with those of one of  the  contacting bodies. As a  result  of  variations i n  load, the place  of 
contact changes: thus a vital part  of the  solution i s  to establish a procedure for calculating 
this change. A tr ial and error scheme i s  employed because i t  i s  virtually impossible to form- 
ulate a variationalprincipleincluding unknown variables  which locate  the surface of contact. 

The overall strategy for solving  the  contact problem i s  discussed here. First, an  incre- 
ment in  the  external  load or prescribed displacement i s  applied. Second, a  contact surface 
i s  assumed together with  the points on it through which nodes of the bodies contact  each 
other. Also, the types of  contact  (sliding or non-sliding) at each of the above-mentioned 
points areassumed .For the initial  calculation  of the first load increment, the above assump- 
tions  are made simply by  inspection,  and  for  the first iteration  after each new load increment, 
the converged solution  of  the previous load step i s  used. Third, a l l  the necessary matrices 
are calculated and assembled. At the i-th iteration of the N-th load step, incremental 

displacement, AU and contact  tractions '(Tk + A T  ) are  solved from a finite element 

matrix equation, Fourth, knowing  the total displacement U at the end of,the previous k 
loading step N-1, the total displacements U + 'A U on the boundary, and contact 

tractions (Tk + A? ) are  checked to determine i f  they  satisfy the  conditions of contact. 

If they do not satisfy these conditions, the location  of the assumed contact 
surface i s  modifi'ed and  the  procedure  repeated until they do. Next,  a 
convergence test i s  made, and i f  the  solution i s  not convergent, the location  of  the 

I c 

k N-1 

N-1 
k k 

I 

k 
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contact surface i s  further  modified and  the solution procedure  repeated. 

To determine i f  the  solution satisfies the  conditions of contact,  the following 
assurances are made: 

( 1 )  That  nodes of either body beyond the  last  contacting nodes  from the 
previous iteration have  not  penetrated the other  body. 

(2) That tractions a t  the  contacting nodes are compressive. These normal 
tractions  can  be  calculated  by  three  different methods; (a) from the 
stress coefficients, (b) from the  equivalent  nodal forces, and (c) from 
the  contact  tractions, $ + A.. Here  the  last method was  used. 

(3) That the  relationship  between normal and tangential  contact tractions, 

i s  satisfied.  Depending on which of the above checks, i f  any, i s  violated, one of the 
following procedures i s  employed to modify  the assumed location  of the  contact surface. 

(a) If ( 1 )  i s  violated,  the  contact surface may be  extended to  include  the 
points at  which  penetration has occurred. 

(b) If (2) i s  violated,  the  contact surface i s  reduced  by  ekcluding nodes 
at  which  the  tractions  are  tensile. 

(c) If (3) i s  violated,  sliding i s  allowed  to occur. 

After  the  conditions  of  contact  are satisfied, a  test  for  convergence can be made by 
calculating  the  following  quantity: 

where AU i s  the  displacement at  the k-th degree of freedom. If R i s  less than  a  precribed 
quantity, say 0.01, the  solution i s  considered as converged. 

k 

EXAMPLE SOLUTIONS 

The finite element model and solution scheme are  applied  to problems of contact 
between  a disk and a semi-infinite  half-plane. The overall mesh pattern,  the location of 
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the prescribed displacement and relevant dimensions  are  shown in Fig. 2-a, with the area 
immediately surrounding the  contact surface shown in great detail in  Fig. 2-b. The semi- 
infinite half-plane has been modeled  by a finite one with  overall dimensions  much larger 
than those of the disk. The basic element used i s  four-node quadrilateral element derived 
by assuming  seven P -parameters and I inear displacement distribution  along each  edge. 
Five-node and six-node elements are also introduced in  transition regions between coarser 
and finer meshes. Contact tractions  along each contact element are approximated by linear 
interpolations. 

Non-Sliding Contact 

Problems are solved for the case with both  applied loads  and prescribed displacements 
at the top of the disk. In the problems, the ratio  of Young's moduli are varied over a range 
from 1 to and slightly  different mesh patterns  near the contact surface  are used to 
accornrnoda te'. node-to-node  and node-to-internode contacts. Loads  or displacements  are 
applied by hethree increments until the length of contact surface becomes about 2.4 mm, 
For each  increment, the converged  solutions  are  reached with three or four iterations. For 
these solutions, the best results for contact tractions are obtained when calculated from 
equivalent nodal  forces  and  are  compared excellently  with the Hertz  solution i n   a l l  cases. 

Frictionless Contact With Extensive SI iding 

The half disk and the semi-infinite  half-plane are  also  used to demonstrate the capa- 
bi l i ty of this forrnulat ion to solve extensive sliding contact problems.  Since the contact 
between the two bodies i s  frictionless, the solution i s  independent of the path;  thus a Hertz 
solution i s  again available for comparison.  Solutions  are obtained for prescribed displace- 
ments at the top of the disk by eight increments. Stress distributions on the p l a n e  of con- 
tact, for two prescribed displacements,  are plotted in Fig. 3 where zero position represents 
the point of initial contact. It i s  seen that the solution agrees  almost exactly  with  that  of 
the Hertz solution. It i s  noted that the center of symmetry of the stress distribution moves 
to the left  as the half-disk slides in that  direction. 

Frictional Contact With Extensive SI iding 

The  same problem i s  again solved here with  friction between the disk and the half- 
plane as an added consideration. No solution to this problem, analytic or otherwise,  can 
be found;  thus, results arrived  at here wil l  be justified by comparison with the results of the 
previous section and  by  showing that they satisfy the conditions of contact. 

The normal tractions at the contacting nodes between the disk and the half-plane for 
every 4th displacement increment are shown in Fig. 3 and  are  compared with those of the 
frictionless case.  Because of  friction, i t can be seen that  the displacement of the  contact 
surface is  retarded. That the normal tractions of the plane and disk are equal i n  magnitude 
and  opposite in sign i s  also evident i n  the figure. This implies that  the normal tractions 
satisfy a condition of contact. A condition of sliding  contact requires the ratio between 
normal  and tangential components of tractions to be constant  and equal to the coefficient  of 
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fr iction . They were approximately  verified for all  contacting nodes. Finally,  the  con- 
tacting surfaces of  the disk and  the  plane  are shown in  Fig. 4 along  with  the  locations  of the 
.nodes obtained in previous solutions. It can be seen that  friction retards the movement of 
the  contact surface, and as in the  previous  solution,  through averaging  over  the  entire con- 
tact surface, the  contact  condition  of no separation or penetration i s  satisfied. 

C.0NCLUS IO NS 

An  incremental  variational  principle and a corresponding finite element 
formulation have been made for contact problems based on an assumed  stress 
hybrid method. An iterative scheme for the  solution has been  developed. 

Successful applications  of the present method  for plane  elasticity problems 
have been demonstrated for 

(a) Non-sliding problems with node-to-node contact 
and with node-to-internode  contact, 

(b) Frictionless  contact with extensive  sliding,  and 

(c)  Frictional  contact  with  extensive  sliding. 

The present method should be extended to problems involving  material 
and/or geometrical  nonlinearities in  addition  to  contact  nonlinearity. 
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SUMMARY 

This  article  summarizes  some  aspects of  research  in  progress  for  develop- 
ing  finite  element  methods  for  contact  problems. We propose  a  new"finite  ele- 
ment  approach"  for  contact  problems  in  two-dimensional  elastodynamics.  Sticking, 
sliding  and  frictional  contact  can be  taken  into  account.  The  method  consists 
of  a  modification of the  shape  functions,  in  the  contact  region,  in  order  to 
involve  the  nodes  of  the  contacting body. The  formulation  is  symmetric  (both 
bodies  are  contactors  and  targets),  in  order to avoid  interpenetration.  Compati- 
bility  over  the  interfaces  is  satisfied.  The  method  is  applied  to  the  impact of 
a block  on  a  rigid  target.  The  formulation  can  be  applied  to  fluid-structure 
interaction,  and  to  problems  involving  material  nonlinearity.  The  extension  to 
three  dimensions  presents  additional  difficulties,  but  it  is  possible. 

INTRODUCTION 

The  approach  presented  in  this  article  was  developed  while  trying  to  simu- 
late  the  movement  of  a  gas  bubble  in  a  liquid.  The  original  idea  was  to  intro- 
duce  the  compatibility of the  velocities  over  the  gas-liquid  interface  via  a 
constraint  equation  and  to  handle  it  by  the  Lagrange  multiplier  method. In  a 
second  step,  the  Lagrange  multiplier  method  was  replaced  by  a  penalty  method, 
which  is  easier  to  implement. In  both  cases,  the  constraint  equation  is  a 
geometric  relationship  between  gas  and  liquid  velocities. No local  remeshing 
was  performed;  the  bubble  and  liquid  meshes  were  simply  superposed.  This  resul- 
ted  in  poor  pressure  fields  along  the  interface.  Looking  for  an  improvement  of 
this  situation,  remeshing  appeared  as  the  best  but  also  the  most  cumbersome 
solution.  Alternatively,  a  modification of the  shape  functions  appeared  to  have 
the  advantages  of  remeshing,  without  its  inconveniences.  This  latter  approach 
is described  herein  as  it  is  applied  to  contact  problems  in  two-dimensional 
elastodynamics.  Frictional  contact  results  in  an  exchange of momentum  between 
the  two  contacting  bodies, and can  be  realised  by  direct  introduction  of  a 
contribution of the  contactor's  velocity  into  the  target's  equation of motion. 
This  is  conveniently  done  by  means of a  modification  of  the  shape  functions,  as 
described  in  the  next  paragraphs. 
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The proposed  approach  has   the  advantage,  as compared t o   t h e  Lagrange mul -  
t i p l i e r  method,  of  maintaining a c o n s t a n t   s i z e  of t h e   l i n e a r   s y s t e m   t o  be 
solved.  Compared t o  a penalty  method, it has  the advan tage   t ha t  we ge t   au to-  
matic c o m p a t i b i l i t y  of t h e   f i e l d  variables o v e r   t h e   i n t e r f a c e .  When t h e  
formulat ion i s  symmetric ( i . e . ,  both  bodies  are targets and c o n t a c t o r s ) ,  
i n t e r p e n e t r a t i o n  i s  t o t a l l y   a v o i d e d .  

MODIFIED SHAPE FUNCTIONS 
FOR  QUADRILATERAL FINITE ELEMENTS 

Figure  1 shows a two-dimensional  contact  problem. Node C contacts   e lement  
(1-2-3-4) o f   t h e   t a r g e t   a n d  from then  on c o n t r i b u t e s   t o  i t s  shape   func t ions .  
We s ta r t  from t h e   i n i t i a l  4-nodes i n t e r p o l a t i o n   f u n c t i o n  

4 
v = 1 N, va 

with  Na = 0.25 (1+  sign(c,) g ) ( l + s i g n ( - q , ) q )  ( 2 )  

where 5 , 7 a r e   l o c a l   c o o r d i n a t e s ,   a n d v a r e   t h e   v e l o c i t i e s .  
I n   o r d e r   t o  take t h e   c o n t r i b u t i o n   o f   p o i n t  C (node 5 )  i n to   accoun t ,  we modify 
t h e   i n t e r p o l a t i o n   f u n c t i o n  as fol lows : 

5 
v = 1 Nl V, 

a= 1 
N o t i c e   t h a t  from a g loba l   po in t   o f   v iew  there  i s  no new node  appearing. 

Obviously, a "hat   shape  funct ion" a t  node 5 i s  t h e  most adequate   for   our  
pu rpose .   Th i s   y i e lds   au tomat i c   compa t ib i l i t y   o f   t he   ve loc i t i e s  at t h e   i n t e r f a c e ,  
if a symmetric  formulation i s  used .   Fur ther ,  we want t o   a c c o u n t   f o r   t a n g e n t i a l  
s l i d i n g   w i t h   f r i c t i o n  a t  the   con tac t   po in t .   The re fo re ,  we in t roduce  a f a c t o r  p 
which  a l lows  the  shape  funct ion a t  node 5 t o   va ry   i n   ampl i tude   be tween  0 and 1, 
which w i l l  l e a d   t o  a p a r t i a l  exchange  of momentum. The r e su l t i ng   shape   func t ions  
are  (assuming C i s  on s i d e  7 = + 1) : 

and * N, = N, - a, N: a = 1-4 

with  a, = 0.5 ( l+s ign 5, g 5 )  
The loca l   coo rd ina te s   o f  C are (E  ,l). We can   a l so   assume,   wi thout   res t r ic -  

t i o n ,   t h a t   t h e   c o n t a c t   p o i n t  i s  a s s o c i a t e d   w i t h   l o c a l   c o o r d i n a t e s  ( 0 ,  +I) , N* 5 
5 
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This shape  funct ion i s  shown on   f igure  2. Observe t h a t  N 5 ( E 5 ,  T 5 )  does  not 
vanish a t  node 5 when p#  1, but Na = 1 is preserved.  

I n  the sequel ,  w e  s epa ra t e   no rma l   (n )   and   t angen t i a l  ( t )  d i r ec t ions   and  
t h e r e f r o m   t h e   f o l l o w i n g   t y p i c a l   p o s s i b l e   s i t u a t i o n s .  

a. p n  = 1, pt = 0 ,  c o r r e s p o n d s   t o   f r i c t i o n l e s s   s l i d i n g   i n  the  t a n g e n t i a l   d i r e c -  
t i o n   a n d   s t i c k i n g   i n   t h e  normal   direct ion.  This  y i e l d s  : 

N = Na ( a  = l - - 5 ) ,  t h e   s t a n d a r d  5-nodes i n t e r p o l a t i o n  

func t ion ,  

N = N ( a  = l - b ) ,  t he   s t anda rd  4-nodes i n t e r p o l a t i o n  
t a 

func t ion .  

* 
n 

* 

c .  p n = l ,  pt ~ ] 0 . 1 [  t h i s  a c c o u n t s   f o r   f r i c t i o n a l   s l i d i n g .  

Since  pdepends on o r i e n t a t i o n ,  w e  in t roduce  a second  order   tensor ,   which w e  
need i n   o r d e r   t o   d e f i n e   s t r a i n  rates and s t r e s s e s   i n   g l o b a l   c o o r d i n a t e s .  

I n  a loca l   o r thogona l  frame t a n g e n t i a l   t o   t h e   t a r g e t   s u r f a c e  we wr i te  

where t h e  s u p e r s c r i p t s  T and C s t a n d   f o r   t a r g e t   a n d   c o n t a c t o r ,   r e s p e c t i v e l y ,   a n d  
t h e   s u b s c r i p t s  n and t fo r   no rma l   and   t angen t i a l .  

t Equation ( 7 )  d e f i n e s   t h e   c o n t r i b u t i o n   o f  node 5 ( c o n t a c t o r )   t o   t h e   t a r g e t  
v e l o c i t y   w h i l e   t h e   t r u e   l o c a l   v e l o c i t y ,  a t  C y  i s  given by 
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where t 

and [ N,"] i s  de f ined  as fol lows ti 

The mat r ix  En i s  diagonal  when d e f i n e d   i n  a l o c a l   r e f e r e n t i a l ,   t a n g e n t i a l  
t o   t h e   c o n t a c t   s u z f a c e .  I t  does  not  induce a coupl ing  of   the  normal   and  tangen-  
t i a l  components ,   bu t   th i s   would   no t   be   t rue   in  a g l o b a l   r e f e r e n t i a l .  We can, 
t h e r e f o r e ,   e s t a b l i s h   t h e   s t i f f n e s s   i n   t h i s   l o c a l   r e f e r e n t i a l   a n d   r o t a t e   t h e  
element   matr ix   before  we assemble   the   e lements .   Al te rna t ive ly  w e  can make t h e  
d e r i v a t i o n   i n  a g loba l   coord ina te   sys tem.  

In   p rac t i ce ,   t he   who le   e f fo r t   e s sen t i a l ly   r educes   t o   minor   changes   i n   t he  
shape   func t ion   rou t ines .  

TRANSIENT  SOLUTION PROCEDURE 

Search  Algorithm 

We need to   de t e rmine  a t  each time s t e p   t h e   l o c a t i o n   o f   e a c h  node  of  each 
body i n   t h e   c o n t a c t  zone   w i th   r e spec t   t o   t he  mesh o f   t he   o the r   one .  For t h a t  
purpose a connec t iv i ty   ma t r ix  i s  e s t a b l i s h e d   i n   t h e   i n p u t   p h a s e ;   t h i s   m a t r i x  
l i s t s  a l l  elements   connected  to   each  e lement .  Assuming t h e  time s t e p   t o   b e  
small, w e  memorize t h e   p r e v i o u s   p o s i t i o n   o f   e a c h  node  (by an element  number), 
and  search for i t s  new pos i t i on   i n   ad j acen t   e l emen t s .  A 2-dimensional  search 
pa th  i s  shown on f i g u r e  3. Once t h e  new p o s i t i o n  i s  known, w e  modify t h e  
shape   func t ions   o f   the   t a rge t   e lement  as d e s c r i b e d   i n   t h e   p r e v i o u s   p a r a g r a p h  
and  compute t h e   u p d a t e d   s t i f f n e s s e s .  

t T as supe r sc r ip t   o f  a m a t r i x   s t a n d s   f o r   t r a n s p o s e  
tt a depends  on t h e   l o c a l   c o o r d i n a t e   o f   t h e  f i f t h  node a 
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Predictor-Corrector   Algori thm 

We adop t   he re   an   exp l i c i t   p red ic to r - co r rec to r   a lgo r i thm,   de f ined  by t h e  
fo l lowing   equat ions ,  at t i m e   s t e p   ( n  + 1) (see re f .  1, 2 f o r  detai ls) .  

Equations (16)  and (17) are p r e d i c t o r   e q u a t i o n s   ( u p p e r   t i l d a ) ,  (18) and (19)  a r e  
c o r r e c t o r   e q u a t i o n s ,   ( 2 0 )   t o   ( 2 2 )  are i n i t i a l   c o n d i t i o n s ,  and N i s  a nonl inear  
a lgebra ic   opera tor? .  The implementation  procedure  can  be  found  in ( r e f .  1). 

If f r i c t i o n a l   c o n t a c t   o c c u r s ,  w e  n e e d   i n   a d d i t i o n  a p red ic to r   equa t ion  for 
pn+ . Because  of   lack  of   space,  t h i s  i s  not   developed  here .  For t h e  time be ing  

we a i o p t  

- 

NUMERICAL RESULTS 

The ana lys i s   o f   an   impact   o f  a rec tangular   b lock  on a r i g i d   s u r f a c e  i s  
performed  (see r e f .  3, for comparison).   Figure 4 shows t h e  mesh. The data a r e  

dens i ty  p = 0.01 

modulus o f   e l a s t i c i t y  E = 1,000 

P o i s s o n ' s   c o e f f i c i e n t  v = 0 . 3  

dimensions L . w = 9.4 
t i m e   s t e p  A t  = 0.002725 

t If variables are t o   b e  memorized a t  e l emen t   i n t eg ra t ion   po in t s ,  as o f t e n   i n  
nonlinear  problems, remember t h a t  t h e s e  are moving when node 5 moves. 
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Newmark parameters 
( e x p l i c i t   p r e d i c t o r -  
co r rec to r   a lgo r i thm)  

y = 0 . 5  p = O . 2 5  

i n i t i a l   v e l o c i t y  vo = 1 

wave v e l o c i t y  C, = ( [ E ( l - v ) ]  / [ ( l + V ) ( l - 2 V ) -  p]}Oe5 = 366.9 

The time s t e p  i s  d e f i n e d   b y   t h e   t r a n s i t  time f o r  a d i l a t a t i o n a l  wave t o  
c ros s  one  element. The impact   t akes   p lace  a t  t = 0. F r i c t i o n l e s s   c o n t a c t  i s  as- 
sumed (p = 0 ) .  This  i s  in t roduced  via i so l a t ed   nodes ,  as shown on f i g u r e  4a. 
For t h e   p u r p o s e   o f   t e s t i n g   t h e  new formulat ion,   both  node-to-node  and  dis t inct  
nodal   pos i t ions  are t e s t e d   a n d   y i e l d   t h e  same results. 

t 

The a n t i c i p a t e d   s o l u t i o n  i s  shown on f i g u r e  4b. Th i s   exac t   so lu t ion   has  
two constant   zones  separated by the  d i l a t a t i o n a l  wave f ront   emanat ing   f rom  the  
i n i t i a l   i m p a c t .  The c i r c u l a r  wave f r o n t  i s  a result  o f   r e f l e c t i o n s   o f f   t h e  free 
boundary. 

During t h e   e a r l y   s t e p s   o f   t h e   c o m p u t a t i o n ,  stresses i n  zone I1 are obta in-  
ed   f rom  the   impulse   equat ion   appl ied   to  a one-d imens iona l   s i tua t ion  ( U = c - p - v 0 )  
S t r e s s  results shown on figure 5 .a c o n f i r m   t h e   v a l i d i t y   o f  t h e  new approach. 
Some overshoot  appears,   however,   in the  s t r e s s  results o f   t h e   l o w e s t  row o f  
e lements ,   p robably   due   to   the   absence   o f  a d i s c r e t e   i m p a c t   c o n d i t i o n   i n   t h e  
algori thm. The deformed  configuration at t = 0 . 0 2 1 8 s . i ~  shown  on f i g u r e  5b. 

CONCLUDING REMARKS 

A new approach to   con tac t   p rob lems   i nvo lv ing   f r i c t ion   i n   t .wo-d imens iona l  
elastodynamics i s  p r o p o s e d   i n   t h i s   a r t i c l e .  The b a s i c   i d e a   o b v i o u s l y  shows some 
ana logies   wi th   loca l   remeshing   techniques ,   l ike   the   one   p roposed   in  ( re f .  4 ) .  
The t r e a t m e n t   o f   f r i c t i o n   v i a   m o d i f i e d   s h a p e   f u n c t i o n s  seems similar t o   t h e  
l i n e s   o f   t h i n k i n g   a d o p t e d   i n  ( re f .  5 )  for the  treatment  of  shock  waves.  

The proposed  formulation i s  symmetric  (both  bodies are contactor   and tar- 
g e t   f o r   e a c h   o t h e r )   a n d  satisfies c o m p a t i b i l i t y   o f   v e l o c i t i e s   o v e r   t h e   c o n t a c t  
i n t e r f a c e  (when poss ib le ) ,   thus   avoid ing   in te rpenet ra t ion .   Comple teness   o f  the 
modified  elements  remains  satisfied.   Although no de ta i led   compar ison   wi th   d i f -  
ferent   approaches has been made as ye t ,   t he   fo l lowing   advan tages   can   be  men- 
t i oned  : c o n s t a n t   s i z e  o f  t he   sys t em  o f   equa t ions   (no t   t rue  f o r  local   remeshing 
or Lagrange  multiplier  approach,  important i f  a n   i m p l i c i t   s o l u t i o n  i s  performed) 
and   i n t e r f ace   compa t ib i l i t y   (no t   t rue   i n   gene ra l   fo r   Lagrange   mu l t ip l i e r s  o r  
pena l ty  methods ) . 

The ex tens ion   o f   t he  method to   s eve ra l   con tac t ing   nodes   pe r   e l emen t  i s  
poss ib l e ,   bu t  it i s  n o t   t r i v i a l .  The e x t e n s i o n   t o   c o n t a c t   g - o b l e m s   i n   t h r e e  
dimensional   space  and  inclusion  problems  in  2-D i s  p o s s i b l e ,   b u t  a t  t h e   c o s t  
o f   l o s i n g   i n t e r f a c e   c o m p a t i b i l i t y .  As  already ment ioned ,   nonl inear   ana lys i s  may 
p r e s e n t   m i n o r   d i f f i c u l t i e s   b e c a u s e   o f   t h e   f a c t   t h a t   i n t e g r a t i o n   p o i n t s   c a n  move. 
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I 

Further  research i s  needed on the   p red ic to r   a lgo r i thm  fo r   s l i d ing   w i th   f r i c t ion  
and  impact-release  conditions  have  to  be  added. 

O u r  main e f f o r t ,  at present ,  i s  directed  towards  testing  the  approach i n  
problems  involving  friction. 
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Figure 1.- Contact  problem. 

Figure 2.- Modified  shape functions. 

Figure 3.- Search  path. 
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( a )  F i n i t e  element mesh. 

1 

I 

+X 

( b )  Wave front  diagram. 

Figure 4. - Impact of  rec tangular   b lock  on a r i g i d   s u r f a c e .  
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( a )  S t r e s s   r e su l t s .  

T' 

+X 

( b )  Deformed mesh. 

Figure 5.- S t r e s s   r e s u l t s  and r e s u l t i n g  
deformed mesh. 
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STJMMARY 

The  objective  of  this  paper  is  to  develop  a  more  accurate  procedure  for 
the  determination  of  the  inelastic  behavior  of  structural  components.  For 
this  purpose,  the  actual  stress-strain  curve  for  the  material  of  the  structure 
is  utilized  to  generate  the  force-deformation  relationships  for  the  structural 
elements,  rather  than  using  simplified  models  such  as  elastic-plastic, 
bilinear  and  trilinear  approximations. 

Force-deformation  curves  in  the  form of universal  generalized  stress- 
strain  relationships  are  generated  for  beam  elements  with  various  types  of 
cross  sections. In the  generation  of  these  curves,  stress  or  load  reversals, 
kinematic  hardening  and  hysteretic  behavior  are  taken  into  account. 
Intersections  between  loading  and  unloading  branches  are  determined  through 
an  iterative  process. 

Using  the  inelastic  properties  determined  in  this  study,  the  plastic 
static  response  of  some  simple  structural  systems  composed  of  beam  elements 
is  computed.  Results  are  compared  with  known  solutions,  indicating  a  consi- 
derable  improvement  over  response  predictions  obtained  by  means of simplified 
approximations  used  in  previous  investigations.  The  application  of  this 
procedure  to  the  dynamic  load  case  is  currently  in  progress. 

INTRODUCTION 

Structural  systems  analyzed  and  designed  for  traditional  loads  and 
materials  have  been  observed  to  undergo  inelastic  deformations  when  excessive 
load  conditions  are  experienced. It is,  therefore, an established  fact now 
that  inelastic  deformations  do  occur  in  structures  and  are  considered  in  the 
analysis  in  order  to  produce  more  economical  and  safe  designs.  For  example, 
a  generally  accepted  philosophy  in  the  seismic  analysis  and  design  of  struc- 
tures  is that.a structure  should  remain  elastic  during  earthquakes  of  small 
intensity  that'  occur  frequently;  it  should  undergo  limited  plastic  deformations 
during  earthquakes  of  moderate  intensity;  however,  it  may  undergo  large  plastic 
deformations  but  without  major  collapse  during  earthquakes  of  relatively  high 
intensity  that  occur  infrequently. 

*This  study  has  been  partially  supported  by  the  National  Science  Founda- 
tion  Research  Grant  No.  PFR-79-16263. 
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At the  same  time,  advances in  naval,  aerospace and  nuclear  reactor 
technology  has  led  to  the  use  of  new  materials  such as stainless  steel,  alloys 
of  aluminum  and  nickel,  reinforced  plastics,  etc.  The  stress-strain  curves 
for  these  materials  are  generally  nonlinear.  Therefore, an economical  design 
of  structures  composed  of  such  materials  requires an  accurate  knowledge of  the 
magnitude  and  distribution  of  the  stresses  and  strains, as well  as, the 
displacements. In all  cases  the  effect  of  nonlinearities  must  be  considered 
in  the  analysis. 

In the  study  of  the  inelastic  behavior  of  structures  various  idealizations 
to  the  actual  stress-strain  curves  or  force-deformation  relations  have  been 
employed.  The  most  extensively  used  model is the  elastic  perfectly  plastic 
representation,  principally  due  to  its  simplicity.  When  unloading  occurs, 
this  model  neglects  the  strain  hardening  and  Bauschinger  effects.  In  general 
it  produces  conservative  results  and  is  mostly  suitable  for  mild  steel 
structures.  Bilinear  models  with  a  nonzero  slope  for  the  inelastic  branch 
have  also  been  used  widely.  These  models  allow  for  the  consideration  of  strain 
hardening  effects  (both  isotropic  and  kinematic) due to  loading  and  unloading 
cycles  arising  from  static  and  dynamic  loads.  A  trilinear  model  has  also  been 
used  to  simulate  the  stress-strain  relationship  of  the  material  under  static 
loads. 

Simplified  models  often  perform  satisfactorily  in  predicting  the  inelastic 
behavior  of  special  classes  of  structures.  However,  for  general  types  of 
structures,  an  accurate  representation  of  the  stress-strain or force- 
deformation  properties  are  needed  for  both  the  loading  and  unloading  branches 
in the  form  of  curvilinear  or  multilinear  (piecewise  linear)  relations  that 
follow  as  closely  as  possible  the  actual  behavior  of  the  system. 

In the  present  study an accurate  procedure  is  considered  for  the  determi- 
nation  of  the  inelastic  behavior  of  structural  components.  For  this  purpose, 
the  actual  stress-strain  curve  for  the  material  of  the  structure  is  utilized 
to  generate  the  force-deformation  relationships  for  the  structural  elements, 
rather  than  using  simplified  models,  such  as  elastic-plastic,  bilinear  and 
trilinear  approximations.  Applying  this  process  to  frame  type  structures, 
force-deformation  curves  in  the  form  of  universal  generalized  stress-strain 
relationships  are  generated  for  beam  elements  with  various  types  of  cross 
sections.  In  the  generation of these  curves  stress  or  load  reversals,  more 
realistic  strain  hardening  properties  and  hysteretic  behavior  are  taken  into 
account.  Intersections  between  loading  and  unloading  branches  are  determined 
through an iterative  process.  Based on the  rather  accurate  force-deformation 
relationships  of  the  individual  elements,  the  governing  equations  for  the 
structural  system  are  established  and  used  to  compute  the  inelastic  response 
of  the  structure. 
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GOVERNING  EQUATIONS 

Application  of  the  Hamiltonian  Principle  to  discrete  systems in the 
context  of  the  finite  element  method  yields  the  basic  dynamic  equations 
governing  the  behavior of the  structural  systems. In matrix  form  these 
equations  can  be  expressed  as  (ref. 1) 

where [m] = consistent  mass  matrix  of  the  structural  system. 

[K] = elastic  stiffness  matrix  of  the  structural  system. 

[K ] = geometric  stiffness  matrix of the  structural  system. G 

(9) = vector  of  displacements  at  the  structural  degrees  of  freedom. 

{ G >  = vector  of  accelerations  at  the  structural  degrees  of  freedom. 

{F} = generalized  nodal  force  vector  corresponding  to  externally 
applied  loads. 

{F > = equivalent  generalized  nodal  force  vector  due  to  plastic 0 

strains,  computed  in  accordance  with  the  initial  stiffness 
method. 

In  case  of  static  loading  the  above  equations  take  the  form  of 

([K] + [KG]) {q} = {F} + {Fo> 

PLASTICITY RELATIONS 

Stress-Strain  Curve 

An experimentally  determined  virgin  curve  of  the  material  is  in  general 
curvilinear.  Starting  with  the  experimental  stress-strain  data  analytical 
expressions  can  be  obtained  to  represent  this  data.  Such  expressions  can  be  in 
the  form  of  algebraic  or  other  types  of  polynomials,  exponential  functions,  or 
the  widely  used  curvilinear  relationship  known  as  the  Ramberg-Osgood  approxima- 
tion  represented  by 

E = ;  [1++) R- 1 3 
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in  which E and u are  the  unit  strain  and  unit  stress,  respectively, E repre- 
sents  the  modulus  of  elasticity,  denotes  the  yield  stress  of  the  material 
and D and R are  real  constants  to “x e  determined. However, this  relationship 
is not  explicit in stresses  and,  therefore,  numerical  procedures  are  needed  to 
find  the  stresses  corresponding  to  given  strains.  On  the  other hand, if  the 
stress-strain  data  cannot  be  represented  by  an  analytical  expression,  the 
curve  is  approximated  by  a  series of line  segments  given  by 

where, (U<,E:) are  the  stress-strain  values  at  the  beginning  of  the  ith  segment 
and  ki+l 1s ;he slope of  the  line  segment  between  the  points  (ai ,E .) and 
(‘i+l, &i+l 

+ 
) expressed  as 1 

a - u  
- E  

i+l i - - 
ki+l , i = 0,1,2, . . . , (n-1) 

where  n  is  total  number  of  segments  used  to  approximate  the  curve. 

Moment-Curvature  (Force-Deformation)  Relationship 

Figure 1 shows  a  general  elasto-plastic  doubly  symmetric  cross  section  of 
a  beam  member. A linear  strain  distribution  over  the  depth  of  the  cross 
section  up  to  ultimate  behavior  is  assumed.  Tensile  stresses  are  considered 
positive  and  curvatures  causing  positive  strains  at  bottom  fibers  are  also 
positive. The x-  and  y-axes  are  the  principal  axes  and  the  z-axis  is  the 
geometric  centroidal  axis of the  cross  section. The  bending  moment  acting  on 
the  cross  section  is  the  sum  of  moments  of  the  stresses  acting  on  the  cross 
section  about  the  geometric  centroidal  axis,  i.e. 

M = J G  ydA 

A 

in  which dA is an element of area.  The  integration  is  carried  over  the  elas- 
tic  and  plastic  parts  of  the  area.  Usually  the  stress-strain  curve  of  the 
material  cannot  be  represented  explicitly  for  stresses;  therefore,  a  numerical 
integration  procedure  is  employed.  For  this  purpose  the  section  is  divided 
into  a  series  of  rectangular  slices,  and  the  contribution  of  each  slice  to  the 
moment  acting  over  the  cross  section  is  found.  Before  indicating  the  details 
necessary  for  accomplishing  this,  certain  definitions  need  to  be  established  as 
follows. If cy,  and a are  the  yield  strain,  ultimate  strain  and  yield 
stress,  respectively,  as  observed  in  a  tension  test  on  a  material  and  h  is  the 
distance  to  extreme  fibers  from  z-axis,  then 

Y 
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M = u  I / h = u  S 
Y Y Z  Y 

where My, I,, S are t h e   y i e l d  moment, moment of i n e r t i a  and  section  modulus 
of t h e   s e c t i o n ,   r e s p e c t i v e l y .  The y i e ld   cu rva tu re  4 is obtained  f rom 

Y 
I$ = M /E I, 

Y Y  
Based  on the  assumption  of  a l i n e a r   s t r a i n   d i s t r i b u t i o n   o v e r   t h e   c r o s s   s e c t i o n  
of t h e  member, t h e   u l t i m a t e   c u r v a t u r e  I$ is given by 

U 

4, - EU/h 
- 

In   the   p resent   s tudy   the   curva ture   range   be tween +y arid O u  i s  d i v i d e d   i n t o  
a s u i t a b l e  number  of i n t e r v a l s   t o   g i v e  enough d a t a   p o i n t s   t o   f i t  a curve.  
The s t r a i n  a t  t h e   c e n t e r  of i t h   r e c t a n g u l a r   s l i c e ,  assumed to   be   un i fo rmly  
d i s t r i b u t e d   o v e r   t h e  s l i ce ,  cor responding   to  a cu rva tu re   va lue  4 is  given by 

j 

where yi i s  t h e   d i s t a n c e   t o   t h e   c e n t r o i d  of t h e   i t h   r e c t a n g u l a r  s l ice  from  the 
c e n t r a i d a l   a x i s  of t h e   c r o s s   s e c t i o n .  The s t r a i n  ~i i n   t h e   i t h  s l ice  d u e   t o  
curva ture  +j, a t  t h e   j t h   d i s c r e t e   p o i n t   a l o n g   t h e  member, is  used to   de t e rmine  
t h e  stress u i  assumed t o  act  un i fo rmly   ove r   t he   en t i r e  s l ice ,  from t h e  stress- 
s t r a i n   r e l a t i o n s h i p  as d i scussed   p rev ious ly .   I f  Ai is  t h e  area of t h e   i t h  
s l i ce ,  t h e   f o r c e   a c t i n g  on t h e   i t h  s l i ce  is  given by 

The moment of t h e   f o r c e   a b o u t   t h e   n e u t r a l   a x i s  is  obtained  from 

By summing o v e r   t h e   t o t a l  number of s l ices  used   t o  model t h e   c r o s s   s e c t i o n ,   t h e  
t o t a l   i n t e r n a l  moment M on the   c ros s   s ec t ion   co r re spond ing   t o  a cu rva tu re  
is expressed as j j 

NS NS 
M = C  M i = C  IS A i y i  
j i=1 i= 1 i 

where NS is number of sl ices and j r ep resen t s  a t y p i c a l   d i s c r e t e   p o i n t   a l o n g  
t h e  member. S i m i l a r l y   t h e   t o t a l   i n t e r n a l  axial f o r c e  P a t  t h e   c r o s s   s e c t i o n  
due t o  a p r e s c r i b e d   s t r a i n   f i e l d  E is obtained  from 

NS 

i= 1 
P = C  ui Ai 
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Equations  (13)  and (14) directly  yield  force P and  moment M corresponding  to 
a  prescribed  deformation  field.  However,  to  get  the  deformation  corresponding 
to  a  given  load  history,  equations  (13)  and (14) have  to  be  solved  iteratively. 
The  moment  curvature  data  generated  through  the  use  of  equation (13.) is  then 
presented  explicitly  for  curvature  by  a  polynomial  of  the  type 

N 

i=l 
4 = M/EI + c ci M' (15) 

where C are  the  polynomial  coefficients  to  be  determined  and N is  degree  of 
the  polynomial.  Alternatively, an equation of the  Ramberg-Osgood  type. i 

can  be  fitted  in  which D and R are  the  real  constants  to  be  determined. 

Normalized  Moment  Curvature  Relationship 

The  moment-curvature  data  generated  from  Eq.  (13)  is  normalized  by 
using  the  quantities M and 4 so that 

Y YY 
- 
M = M/M 

Y (17) 

where fi and 5 are  normalized  moment  and  normalized  curvature,  respectively. 
The  normalized  curvature  is  then  separated  into  its  elastic and plastic 
components $ and 5p, respectively, so that  solving for 5 e  P 

- 

Since $ = M/EI, based  on  equation  (17)  the  normalized  elastic  curvature  is 
written  in  the  form e 

Based  on  the  normalized  plastic  components  of  curvature  computed  from 
equation (19) ,  a  polynomial  of  the  form 

N 
$p = C di ki 

i=O 

- 

is  then  fitted  to  approximate  the  data,  where  the d ' s  are  constants  to  be 
determined  through  regression  analysis.  Alternatively,  an  equation  of  the  type i 
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+ P = D M  
-R 

is  also  used  to  represent  the  data.  The  real  constants D and  R  are  determined 
by  taking  the  logarithmic  form of Eq.  (22), so that 

In 5, = In D + R In ii (23) 

This  is an equation of a  straight  line.  Constants D and  R  are  determined from 
linear  regression  analysis  using  the  data  for  In 5 and In fi. 

P 

Using  equations. (191, (211,  and (221, the  following  moment-curvature 
relations  can  now  be  formulated 

- 
$=ii , ii<1 (24) 

Slope  of  Generalized  Stress-Strain  Curve 

A universal  stress-strain  curve  usually  represents  the  relationship 

between I$ and fi expressed  by  Eqs.  (21)  or  (22).  Rewriting  these  equations  in 
differential  form  and  solving  for  the  slope E2 yields 

-P 

If  a  smooth  analytical  expression  to  fit  the $ - M data  is  not  possible  with- 
in  tolerable  limits  of  accuracy,  the  slope E of  the  universal  stress-strain 
curve  is  obtained  as  a  series  of  approximate  tangents  drawn  at  discrete  points 
representing  the  data, i.e. 

-P 

2 
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where  i  and if-1 are  typical  discrete  points. 

In eqs.  (21),  (22)  and  (24)-(29)  the cross  section  is  assumed  to  be 
subjected  to  a  bending  moment  about  the  centroidal  axis.  However,  in  practical 
cases,  structural  elements  are  generally  subjected  to  stress  resultants  acting 
in  different  directions.  To  extend  the  applicability  of  the  above  procedure, 
it  is  assumed  that  similar  relationships  exist  between  the  effective  stress 
f* and  effective  strain O* in  a  multi-axial  stress  case.  The  function  f*  in 
normalized  form  is  also  identisied  with  the  yield  function. 

Yield  Function 

When  stress  resultants  in  normalized  form  (instead  of  unit  stresses)  are 
considered  to  be  generalized  stresses  in  the  context  of  plasticity  theory, 
yielding  at  any  section  of  a  member  is  then  assumed  to  occur  when  the  critical 
combination  of  generalized  stresses  initiate  inelastic  deformations  at  that 
section.  The  yield  function  is  expressed  by an equation  of  the  form 

where  Qi  are  the  generalized  stresses  and Y is  the  initial  yield  value. To 
make  the  yield  function  independent  of  the  cross  section,  the  yield  function 
equation  is  derived  in  terms  of  normalized  (dimensionless)  force  parameters. 
A force  component  is  normalized  by  its  corresponding  characteristic  value 
(usually  the  value  at  first  yield). In  normalized  form  equation (30)  takes 
the  form  of 

For  a  space  frame  member  the  cross  section  is  subjected  to  a  generalized  force 
vector S having 6 components, so that 

{Px, vyy VZY M  x  M y y   M )  z 

where 

P = axial  force 
X 

vy, vz = direct  or  transverse  shear  forces 

Mx,  My = Bending  moments 

MZ = Twisting  or  torsional  moment 
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Each  of  these  forces  influence  the  yield  behavior  at  a  cross  section  and  the 
inelastic  response  depends  upon  the  interaction  between  them. In the  past, 
elliptical,  parabolic,  spherical  (ref. 2) and  other  forms  of  yield  functions 
have  been  used in inelastic  analysis  of  structures. In the  present  study 
a  spherical  yield  function is used  as  fndicated  below 

[(&f+(+f+(!k) 2 + ( " )  2 

ox  ox  Moz 

in  which P denotes  the  normalized  yield  value  which  may  change  during  straining 
and P M  and  M are the  characteristic  values  of  axial  force, 

torsional  moment,  and  bending  moments  about  y  and z axes,  respectively. 
Similar  expressions  can  be  written  for  a  plate  element  (ref. 1). 

ox' MOx9 oy 0 2  

The  above  yield  function  can  be  used  in  conjuction  with  an  average  force 
model  (refs. 1, 3) which  assumes  that  an  element  undergoes  plastic  deformations 
if  the  loading  function  f*  determined  from  average  values  of  stress  resultants 
acting  at  the  member  ends  exceeds  the  current  normalized  yield  value. 

Flow  Rule 

A flow  rule  expresses  the  relationship  between  plastic  strains  and 
stresses. In the  present  study  rather  than  solving  the  flow  equations 
rigorously  in  terms  of  stress  resultants,  an  approximate  procedure  (refs. 1, 3) 
is  employed. In this  method  if f* is  the  plastic  potential  at  the  end  of 

a  load  increment  in  dynamic  analysis  (.computed  using  member  forces P 

obtained  from  an  elastic  analysis),  then  the  increment  of  plastic  potential 
df*  for  an  element  already  undergoing  fnelastic  deformation  is  obtained  from 
the  equation 

est 
i est 

1 

* * * 
dfl - - - fest  fprev 

where  f  is  the  plastic  potential  at  the  end  of  previous  load  or  time 

increment.  For  a  transitional  element  the  equation  for  the  increment  of 
plastic  potential  is  of  the  form 

* 
pr  ev 

* * 
dfl = f - f * est 0 

( 3 4 )  

( 3 5 )  

where f * is the initial  yield  value. 
0 
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As shown  in  detai’l  in  reference 1, the  correct  value of the  plastic 
potential  increment df* can  be  computed  from  the  relation 

L 

The  current  corrected  value  of  the  plastfc  potential  f is  thcn  obtained as 
* 
curr 

f* = f  
* 

curr  prev + df 

for  an  element  already  undergoing  plastic  deformations  and 
* * 

0 curr = f + df* 

(37 )  

for an element  entering  the  plastic  range. 

With  the  known  value  of  the  plastic  potential  f , the  final  values  of  member 
(element)  forces  are  computed  by  a  proportioning  procedure  represented  as 
(refs. 1, 3) 

* 

pi - Pi curr - 
curr  est <* 

(39) 

The  overall  numerical  procedure  utilized  in  the  computation of the  element 
and  structural  responses  is  the  same  as  the  one  outlined  in  references 1 and 2. 

NUMERICAL  RESULTS 

To  determine  the  feasibility  of  the  proposed  method,  two  structures  for 
which  results  are  available  in  the  literature  were  analyzed  and  the  results 
were  compared  with  the  works  of  other  investigators. 

Example 1 - The  first  example  considered  consists  of  the  simply  supported 
beam  with  the I cross-section  and  material  property,  as  shown  in  figure 1. 
The  given  stress-strain  curve  corresponds  to  material B as  defined  by 
Chajes  (ref. 4 )  who had  originally  studied  this  structure.  As  in  the  case  of 
the  above  reference,  the  stress-strain  curve  is  idealized  by  a  bilinear 
relationship.  This  is  then  utilized  to  obtain  the  moment  curvature  and  the 
normalized  universal  stress-strain  curves,  as  depicted  in  figure 2. 
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Subsequent ly ,   the   response  of  beam when s u b j e c t e d   t o   e i t h e r  a concent ra ted  
load a t  i t s  midspan o r  a un i fo rmly   d i s t r ibu ted   l oad   ove r  i t s  e n t i r e   l e n g t h  
is obtained.  It should  be  ment ioned  that   Chajes   ( ref .   4)   has   presented 
a "closed-form" s o l u t i o n   f o r   t h e   d e f o r m a t i o n   c h a r a c t e r i s t i c  of the  midspan 
of t h e  beam when s u b j e c t e d   t o  a concentrated  load.  However, h i s   s o l u t i o n  i s  
based  on  the  assumption  that   only  the  f langes resist the  bending moment. I n  
f i g u r e  3 are shown the   de f l ec t ion   r e sponses  of t h e  midspan as o b t a i n e d   i n   t h i s  
s tudy  as w e l l  as t h a t   r e p o r t e d   i n   r e f e r e n c e   4 .  As can  be  observed,  close 
agreement  between  the two sets of d a t a  is exhib i ted .  

Example 2 - As a second  example, a p in-based   por ta l   f rame  s tud ied ,   bo th  
t h e o r e t i c a l l y  and  experimentally,  by Takahashi  and  Chiu  (ref.  5) i s  analyzed. 
The s t r u c t u r e   c o n s i s t s  of W12X27 sect ions,   arranged  to   deform  around  their  
s t rong   axes .  The geometry  of  the  structure  and i ts  loading are shown i n  
f i g u r e  4a. The i d e a l i z e d   s t r u c t u r e  and the   equiva len t   nodal   loading  is shown 
i n   f i g u r e  4b.  Note t h a t   t h e   e f f e c t  of t he   g i rde r   dep th   has   been   t aken   i n to  
account by in t roduc t ion  of an   addi t iona l   equiva len t   load   and  a bending 
moment a t  the   top   o f   the   loaded   co luw.   In   the   ana lys i s ,  a curve is f i t t e d  t o  
t h e   s t r e s s - s t r a i n   r e l a t i o n   f o r   t h e   m i l d  steel  with  an  average  yield stress of 
255 MN/m2 and  modulus of e l a s t i c i t y  of 203. 5X103 MN/m2. This  i s  then  used 
as a b a s i s   f o r   d e t e r m i n a t i o n  of   moment-curvature   re la t ionship  for   the  s t ructure .  
I n   f i g u r e 4 c  is shown the   ho r i zon ta l   de f l ec t ion   r e sponse  of t he   t op  of t h e  
unloaded column.  Again, c l o s e   c o r r e l a t i o n  is observed. 
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NONLINIXR FINITE ELEMENT ANALYSIS - AN ALTERNATIVE FORMlTLATION 

S i l v i o  Merazzi" 
Ecole  Polytechnique  Fgdgrale  de  Lausanne,  Switzerland 

SUMMARY 

A geometrical  nonlinear  analysis  based on  an a l t e rna t ive   de f in i t i on   o f  
s t r a i n  i s  presented.  Expressions  for  strain  are  obtained by computing t h e  
change in   l ength   o f   the   base   vec tors  i n  the  curvil inear  element  coordinate  sys- 
tem. The isoparametric  element  formulation i s  assumed i n  the  global   Cartesian 
coordinate  system. The approach i s  based on the  minimizat ion  of   the  s t ra in  en- 
ergy, and the  resul t ing  nonl inear   equat ions  are   solved by the  modified Newton 
method. Integrat ion  of   the first and second variation  of  the s t r a in  energy i s  
performed  numerically in   t he   ca se   o f  two- and three-dimensional  elements. Ap- 
p l i c a t i o n  i s  made t o  a simple  long  cantilever beam. 

INTRODUCTION 

The non l inea r   f i n i t e  element  formulation  described  here  represents a par t  
of   the  development  of t h e  BASIS f i n i t e  element  analysis  system  (ref. 1). The 
basic   idea w a s  t o  combine l i n e a r  and  nonlinear  behaviour in   o rde r   t o   dea l  more 
e f f i c i e n t l y  w i t h  s t r u c t u r a l   a n a l y s i s .  Thus, nonlinear  elements had t o  be  devel- 
oped  which f i t  into  an  existing  system  without loss of   general   val idi ty .  The 
Lagrange  formulation has therefore  been  chosen  (ref.  2 ) ,  expressing  the dis- 
placement  variables  directly  in  the  global  Cartesian  coordinate  system, 
a l though  loca l ly ,   for   p rac t ica l   purposes ,  a skew coordinate  system may be  pre- 
scribed. The advantage of  t h i s  formulation i s  the  numerical method a r i s i n g  from 
it. By adopting  the  modified Newton method ( r e f .  3, 4) a clear   solut ion  process  
has  been  chosen,  therefore  minimizing  errors due t o  a wrong understanding  of 
nonlinear  behaviour. The s t ra ins   can  be  adapted  to   the  nonl inear i ty   of   the  
problem.  This  feature may considerably  reduce  the  computational  effort. 

* Research  sponsored i n   p a r t  by t h e  Swiss  National  Science  Foundation  (contract 
No. 2267-079) and the  National Swedish  Board f o r  Energy  Source Development 
under  contract No. 5061-012. 
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A set of one-, two- and  three-dimensional  elements ( in   t e rms   of   curv i l in -  
ear coordinates)  can  be  derived  from  this  formulation (Fig. 1). The elements 
presented  here  are  based on the  isoparametric  approximation  (ref.  3). One-di- 
mensional  elements are w e l l  su i t ed   t o   dea l   w i th   cab le  and truss problems 
( r e f .  5 ) .  Membrane and volume elements are mainly  used t o  model e l a s t i c  com- 
pos i t e   s t ruc tu res .  

GOVERNING EQUATIONS 

Consider a point  P of   the undeformed  body (Fig .  2) .  The corresponding 
Cartesian  coordinate  vector {r} may be expressed as a funct ion of  the  body's 
curvil inear  coordinates 0 a 

n 
{ r ~  = 1 {r1.~.(8) ( 1 )  

i= 1 1 1  

where Y. are the  interpolation  functions  of  the  corresponding  nodes.  The base 
vectors a t  P are obtained by deriving {r} with  respect   to   the  coordinates  0 1 a 

For practical   purposes: ,  Eq.  2 can  be rewri t ten 

[ A l a  contains a l l  functions Y and {SI a l l  Cartesian components  of t h e  node 
vectors  {rli . 
I n  order   to   def ine   the   s t ra in   energy   the   met r ic   t ensor  a t  P 

i :,a 

and the   in f in i tes imal  volume 

dV = det  (gaB) do1 do2 do3 

- are  needed. In   the  deformed s ta te   the  base  vectors  become (Fig.  1) 

where {d} contains,  similar t o  {SI, a l l  Cartesian components of  the node 
displacements. The metric  tensor  of  the deformed body at P becomes 
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Subst i tut ing Eqs . 3 and 7 i n  Eq. 8, 

with 

The strains a r e  now defined as t h e   r e l a t i v e  change of  the  base  vectors:  

o r  

Eq. 12 can be expressed i n  terms  of {dl 

with 

Eq. 13 def ines   the   s t ra ins  E: used to  derive  the  numerical   equations from the  
s t ra in  energy. aB 

Note here that  i f  the  deformations  are   l imited  in   s ize   the  root   in  Eq. 13 can 
be  expressed as a series  expansion  according t o  . 

1 

3 . 1 ) '  = 1 + - x + ... 1 
2 ai3 

( 1 6 )  

Retaining  only  the f i r s t  two terms of Eq. 16 leads   to   the   quadra t ic  approxima- 
t i o n  

from  which the l inear   so lu t ion  may be  obtained. 

Assuming l inear   e las t ic   behaviour ,   the   var ia t ion  of s t r a i n  energy  leads  directly 
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to   the   nonl inear   equi l ibr ium  equat ions   o f   the  element. 

The transformation  matrix [TI  i s  constant i f  the  scalar   products   of   the   base 
v e c t o r s   i n   t h e  undeformed  and i n   t h e  deformed  system a r e   t h e  same. 

The s t ra in   energy   dens i ty   then  becomes 

or 

Eq. 20 i s  then  integrated  over   the  e lement .  For one-dimensional  elements  an 
a n a l y t i c a l   s o l u t i o n  i s  p o s s i b l e   ( r e f .  51, whereas f o r  two- and  three-dimen- 
sional  elements  numerical   integration must be  performed.  Using  Gaussian  inte- 
g r a t i o n   t h e   s t r a i n   e n e r a  becomes 

where w designates   the  weight   factor  at the  corresponding  point 0 c1 k k .  

The set   of.   nonlinear  equations  for  one  element i s  d i rec t ly   ob ta ined   f rom  the  
f irst  va r i a t ion   o f   t he   t o t a l   po ten t i a l   ene rgy   w i th   r e spec t   t o   t he   g loba l   va r i -  
ab les  au q;(u.) = - - - f .  (22)  

J aut 1 

If) denotes  the  vector  of  external  loads.  It i s  worth  mentioning  here  that   in 
the  case  of  dynamic analysis   the  equi l ibr ium  equat ions  can  a lso be  obtained by 
applying  Hamilton's  principle  and a s u i t a b l e   o p e r a t o r   f o r   d i s c r e t i z a t i o n   i n  
time . 
After  rearrangement, Eq. 22 becomes 

o r  

with 
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and 

In   o rder   to   so lve  Eq. 22 by the  modified Newton method the  Jacobian  of  {q) i s  
needed : 

[K] = [I au. yuJ]  aU. 

For a set   of   several   e lements   the  s t i f fness   matr ices  [K] a r e  assembled t o   t h e  
g loba l   s t i f fness   mat r ix  and factored.  Using  the  modified Newton method the  n-th 

[K] being  factored a t  i t e r a t i o n   s t e p  R,< n. The r e l axa t ion   f ac to r  i s  computed 
using an  extrapolation method f o r  each i t e r a t i o n   ( r e f .  5 ) .  Thus t h e   f i n a l   l o a d  
l e v e l  i s  reached  stepwise,  and  for  each new load   s tep   the   so lu t ion  i s  extra- 
polated  quadratically.  Convergence c r i t e r i a   a r e  based on the  Euclidean and 
maximum norms ( r e f .  6 ) .  

The computational  procedure i s  e s sen t i a l ly   t he  same f o r  a l l  element  types. How- 
ever,  for  one-dimensional  elements {q) and [KI can  be  determined  analytically 
i n  terms  of u. ,and  the  transformation [TI i s  not  necessary. The [TI matrices 
f o r  two- and three-dimensional   e lements   are   l is ted  in   the Appendix. 

During  the f i r s t  assembly  of [ K l  t h e  [ D l  , [TI  , [El  matrices as wel l  as t h e  
geometry  parameters  gap  and g are computed once f o r  each  Gaussian  point and 
reused for further  computations  of [K] and (9). For each i t e r a t i o n   s t e p  {E) 
and  [PI are   evaluated a t  each  Gaussian  point and the   g loba l  {q) vector  as- 
sembled. The global  load  vector  contains  not  only  external  forces  but  also  the 
f irst  var ia t ion  coming from l inea r   e l emen t s .   In   f ac t ,   t he i r   con t r ibu t ion   has   t o  
be  evaluated  only  once  for  each  load  step,  thus  reducing  the  computing  time. 
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NUMERICAL RESULTS 

An appl icat ion of the   theory  i s  demonstrated  using  results  obtained by t h e  
BASIS computer  program ( re f .  1 ) .  A long   t h in   can t i l eve r  beam (Fig.  3) has  been 
idea l ized  by 8-noded membrane elements. I ts  length i s  1000 mm, height 10 mm and 
thickness 1 mm. The e l a s t i c  modulus i s  3000 N/mm2 and the   Po i s son   r a t io  0.36. 
The beam i s  sub jec t ed   t o  a load  case  consisting  of a var iable   load Q a t  t h e  
node A and a case  with  constant Q and variable  compression  load P .  Since  the 
s t r a i n s  remain  smaller  than one i n   t h i s  example d i f f e r e n c e s   i n   t h e   r e s u l t s  are 
not  detectable when using Eq.  17 instead  of Eq. 13. The convergence c r i t e r i o n  
du r ing   i t e r a t ion  (Eq.  2 8 )  i s  based on t h e   r e l a t i v e  change  of  the  displacement 
vector norm and has   been  set   to  0.0001. The act ive  load i s  applied  stepwise. If 
convergence i s  r a p i d ,   t h e   s t e p  i s  automatically  increased. However, for   h ighly  
nonlinear  problems, it i s  p r e f e r a b l e   t o  recompute  and r e f a c t o r   t h e   s t i f f n e s s  
matrix when the   i t e r a t ion   d ive rges   r a the r   t han   t o   dec rease   t he   l oad   s t ep .  The 
f irst  and  second v a r i a t i o n  of U has  been computed using 2 by 2 Gaussian  inte- 
gration.  Fig.  4 shows t h e  load-displacement  function a t  node A fo r   t r ansve r sa l  
loading, and t h e  same function  for  the  divergence  problem i s  exhibi ted  in   Fig.5.  
Note t h e  good behaviour  of  the two-element approximation even for l a rge  non- 
l i n e a r i t i e s .  

To conclude, it should be  mentioned t h a t  the  problems currently  being  in- 
vest igated  include  the  inf luence  of   the  integrat ion  order  on numerical  accuracy 
and  convergence  behaviour as wel l  as the  nonl inear   creep  of   s t ructures .  

SYMBOLS 

Vectors  are  symbolized by {)-brackets and matrices by []-brackets. [ I T  
means transposed  matrix,  inverted or factored  matrix,  and @ stands  for  
dyadic  product. Greek indices   refer   to   the  curvi l inear   coordinate   system. 

[Ala matrix  of form functions  of  curvil inear  coordinate 0 

product  of  form  function  matrices (Eq.  11) 

a 

ID IaB 
id)  nodal  displacement  vector  (global  Cartesian  components) 

{ E l  s t ra in   vec tor ,   conta ins  components E 
aB 

[El  e l a s t i c i t y   m a t r i x  

gaB 

Gaf3 

{gla base  vector  of  the undeformed  body,  coordinate 0 

metric  tensor of the  undeformed  body 

metr ic   tensor   of   the  deformed  body 

a 
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{GIa base  vector  of  the deformed  body 

g determinant of the  metric  tensor g 

(Y 1 s t r a in   vec to r   i n   t he   l oca l   Ca r t e s i an  system 

(Yo I i n i t i a l   s t r a i n   v e c t o r   i n   t h e   l o c a l   C a r t e s i a n   s y s t e m  

aB 

[Kl second v a r i a t i o n  of  t h e   s t r a i n  energy ( s t i f fnes s   ma t r ix )  

[PI  matrix  defined i n  Eq. 26 

'i in te rpola t ion   func t ions   for  geometry  and  displacements 

(9) f i rs t  v a r i a t i o n  of the   potent ia l   energy 

{'Ii global  Cartesian  coordinate  vector  of node i 

{SI vector  containing a l l  Cartesian node coordinates 

{o 1 s t r e s s   vec to r   i n   l oca l   Ca r t e s i an  system 

{a01 i n i t i a l   s t r e s s   vec to r   i n   l oca l   Ca r t e s i an   sys t em 

[TI  t ransformation  matr ix   re la t ing {E) t o  {y) ( s e e  Appendix) 

Oa curvil inear  element  coordinates 

{Uli global  Cartesian  displacement a t  node i 

U s t ra in   energy  

W k weighting  factor  for  Gaussian  integration 

x , x , x3 orthogonal  Cartesian  coordinates 

X 

1 2  

aB 
expression  def ined  in  Eq. 13. 
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APPENDIX 

The s t r a i n  i s  always  transformed t o  a Cartesian  coordinate  system  defined 
by {VI = {r12 -{rI1 for two-dimensional  elements  and by {VI and {r14 for three- 
dimensional  elements. For membrane elements, [TI becomes 

- - 
[TI-’ = b 1  + cos2$ , 1 - cos2@ , 2sin$  cos$ } a = 1,3 a a c1 a 1 

For volume e lements   the   s ix   s t ra in  components are  transformed  similarly.  
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Figure 1.- Two- and  three-dimensional  elements. 
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Figure 2.- Geometry of deformation. 
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X 

Figure 3.- Deformation of c a n t i l e v e r  beam under 
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SUMMARY 

Finite  element  formulations  for  large  strain,  large  displacement  problems 
are formulated  using a kinematic  description  based on the  corotat ional  compo- 
nents  of  the  velocity  strain.  The corotational components are  defined  in terms 
of a system that  rotates  with  each  element and approximates the  rotat ion  of   the 
material. To account  for  rotations of the  material r e l a t i v e   t o   t h i s  element 
system, extra terms are introduced  in  the  velocity  strain  equations.  Although 
this  formulation i s  incremental, in expl ic i t ly   in tegra ted   t rans ien t  problems it 
conpares  very w e l l  with  formulations  that  are  not. Its s implici ty ,  and i t s  com- 
pa t ib i l i ty   wi th .   cons t i tu t ive   equat ions  found i n  "hydro"  codes make it very 
a t t r a c t i v e   f o r   t h i s  class of  problems. 

INTRODUCTION 

Nonlinear  structures  are  conventionally  treated by kinematic  descriptions 
t h a t  are e s sen t i a l ly  Lagrangian in   na tu re ,   i n   t ha t   t he  measure of  deformation 
is direct ly   re la ted  to   the  total   d isplacements .   Several   types   of  Lagrangian 
formulations are frequently  used:  formulations  based on the  Green s t r a i n   o r  

. Almansi s t r a i n  [1 ,2]  and formulations  based on coro ta t iona l   s t re tch  [3,4]. 

Although velocity  strain  formulations have  been used extensively  for  non- 
l inear   so l ids ,  as exemplified  in  the work of Key [ S I ,  little study  has been made 
of the  application  of  these  formulations  to  structures.  Hughes and Liu  [61 
have presented a formulation  based on the  global components of the   ve loc i ty  
s t r a in .  

In this   paper ,  a corotat ional   veloci ty   s t ra in   formulat ion w i l l  be  presented 
i n  which the  components of the   ve loc i ty  strain are expressed  in a framework 
that   rotates   with  the  mater ia l ;   formulat ions  of   this   type have been studied by 
Green and Naghdi [ 7 ] .  The formulation is then  special ized  to   f ini te   e lements  

*This work  was supported by the   E lec t r ic  Power Research Ins t i t u t e .  
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by assuming that  the  rotation  within  an  element i s  e i ther   cons tan t  or t h a t   t h e  
va r i a t ion   i n   t he   ro t a t ion   f i e ld  i s  small   or  moderate. 

The potent ia l   benefi ts   of   these methods are s igni f icant .  The basic equa- 
t ions  are simpler  than Green s t r a i n   o r  Almansi equations, which endows the  re- 
su l t i ng  computer  programs  with  both  simplicity  and  speed. The stress conjugate 
to   the   coro ta t iona l   ve loc i ty   s t ra in  is the  Cauchy stress tensor  expressed  in 
the  corotational  system. Any constitutive  equations  based on  Cauchy stress and 
ve loc i ty   s t r a in  can  therefore be used.  Furthermore,  the  corotational stress 
and s t ress-s t ra in   matr ix  are both  materially  objective,  so no Jaumann type  cor- 
rections  need be made fo r   t he  stress s t a t e  and the formulation is  d i r ec t ly  
.appl icable   to   anisotropic  materials, which i s  not  true  of  the  formulations 
given  in [5 ]  o r  [81 . 

In the  next  section,  the fundamental  equations  for the corotational  velo- 
c i ty   s t ra in   formulat ion are presented. Next, the  general   equations  for a f i -  
n i t e  element  application  of  this  formulation i s  given.  In  order  to i l lustrate  
the  s implici ty   of   the  method, we then  give  the  formulation  for a beam element 
assuming a constant  rotation  in  the  element.  More complex re la t ions  which ac- 
count  for  the  variation of rotation  in  an  element  are  then  given. The last 
section  gives some examples  of the  appl icat ion  of   this  method to   nonl inear  
t rans ien t  problems. 

BASIC EQUATIONS 

we w i l l  use a kinematical and stress description by Green and Naghdi [7] . 
Let us  denote  the material coordinates of the  s t ructure  by X . ,  t he   spa t i a l  co- 
ordinates by x i ,  t h e  displacements by u i  and the   ve loc i t i e s  hy vi. Then 

u =  x - xi i i (1) 

and the  deformation  gradient F i s  given by i j  

From the  polar  decomposition theorem (see [SI) it follows  that  the  deformation 
gradient  can be expressed as a pure  deformation, which i s  expressed by a SF- 
metric  matrix U and a r i g i d  body rotat ion % in the  form kl' 
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The rotation  matrix R i l  is  orthogonal, so that 

where 6 is  the  Kronecker de l ta .  l m  

We w i l l  denote  the  cyrdinate  system which i s  rotated by the   r i g id  body 
motion of the material by x i  and call it a corotational  coordinate  system. 
This system is re la ted  t o  xi by 

x = R x  
A 

i j 

and i t s  or ientat ion  var ies  from point   to   point   in   the material. 

The veloci ty  strain ( r a t e  of  deformation)  tensor i s  given by 

and the   coro ta t iona l   ve loc i ty   s t ra in ,  which i s  simply  the same tensor  with i t s  
components expressed in the  corotational  coordinates,  i s  given by 

A - 
Dkl - ?ik " j R  Dij (71 

The state of stress w i l l  be represented by the  corotat ional  stress fjj 
which are the  corotat ional  components of  the Cauchy (physical) stress T 
the  t w o  are re la ted  by 

+j 
i j '  

A 

Tkl = R R i k  j R  Tij 
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The corotat ional  components of  the stress are frame invariant ,  SO t h a t  the  
veloci ty  strain is re la ted  t o  t h e  rate of   corotat ional  stress by 

h A A 

'i j k l  Dkl 

where the  matrix C fo r  a .material depends on the  state of stress and 
s ta te   var iab les  su&dk&s the   y ie ld  stress but is independent  of  material  rota- 
tion,  regardless  of  whether  the material is  isotropic   or   anisotropic .   This  is  
a key advantage of corotational  formulations.   If   the  velocity  strain and 
Cauchy stress are expressed  in a fixed  coordinate  system, a Jaumann ra%e i s  
required  to  provide frame  invariance, bu t  more importantly;  the  matrix c,i jklqmust 
a l so  be modified t o  account  for the r i g i d  body rotation.  Furthermore,  such 
formulations are quite awkward in   s t ruc tura l   theor ies  where it i s  of ten conv- 
venient   to   dis t inguish  veloci t ies   tangent  and  normal to   the  current   configu-  
ra t ion.  

A 

For a material i n  the domain n, t h e  rate of i n t e rna l  work i s  given by 

W = jQ Dij Tij dR = Dij Tij dR 
A A  

FINITE EIXMENT EQUATIONS 

We consider  an'element which curre?tly  occupies a volume R . Its nodal e 

displacements are utI,  nodal  velocities V i 1  and  nodal  forces  fg". We represent 
the  velocit ies  withln  the  element by shape  functions 

A A A  

V .  
1 

= N (x) viI 
_. 

I 

where NI are the shape  functions which are  expressed  in ternls of the  corota- 
t ional  coordinates.  Throughout this  paper,   upper  case  subscripts w i l l  refer t o  
nodal  values, as exemplified  in Eq. ( 1 2 )  , and the   ind ic ia1  summation convention 
w i l l  a l so   app ly   t o  these subscripts.  

The pr inc ip le   o f   v i r tua l  work gives 
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int A A  

viI fiI  = Je D~~ T~~ dn 
n 

For  el.ements other  than  the  simplest ,  i.e. those  with  l inear shape  functions, 
the  orientation  of  the  corotational  coordinates w i l l  vary  within  the  element as 
shown i n  Fig. 1. Several   al ternatives are then  available  for  handling  the  r ight 
hand side  of Eq. (13) : 

i. a single  corotational  coordinate system G i  can be chosen for   the  ele- 
ment as shown i n  Fig. 1 and the  relative rotations  ignored; 

ii. a single  corotational  coordinate system G can  be  chosen fo r   t he  ele- 
ment and the   ro t a t ions   r e l a t ive   t o  xi can be accounted  for by modify- 
ing  the  veloci ty  strain equations; 

i 

iii. the  re la t ive  rotat ions  can be accounted f o r  by using  the  transforma- 
t ions  (7)  and (9)  a t  each  point  of  the  element. 

For t h e   f i r s t   a l t e r n a t i v e ,   t h e  use  of Eq. (12) gives 

V i 

so the use of  the  transformation (5) and the  arbitrariness  of  of vi=  gives 

It should be observed t h a t   t h e  stress is expressed  in terms of a single  coro- 
tational  coordinate  system  throughout  the  element.  Therefore, i f  w e  consider 
a b e a m  with a constant   axial  stress T,, it follows  that  the  only  nonzero 
nodal  forces l i e  along  the Z axis  regardless  of  the  curvature  of  the beam. This 
anomaly can  yield  spurious  results whenever the   f l exura l   s t i f fnes s  is s m a l l ,  
s ince it introduces  parasi t ic   bending  in   s ta tes   of   pure  membrane stress, cf 
no ] .  

The second a l t e rna t ive  is t o  introduce  velocity strain re la t ions  which 
account for the   var ia t ion  in   rotat ions  of   the  e lement   but   to  express their compo- 
nents in the  element  system.  If we represent  these  relations by 
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then Eq. (15) becomes 

i n t  - 
fiI = %i DmnkI mn T dR 

Re 

In a subsequent section, forms of Eq. (16) for  beams and axisymmetric she l l s  
w i l l  be presented. Higher order  formulations  as  exemplified by Eq. (17) do 
provide  better  accuracy,  particularly  for  relatively  coarse meshes, but  they do 
not  el iminate  parasit ic bending. 

A SIMPLE BEAM FORMULATION 

In order   to   i l lus t ra te   the   appl ica t ion  of a corotat ional   veloci ty   s t ra in ,  
we w i l l  f i r s t  consider a beam element  with the  simplest  corotational formula- 
t ion where the  nodal  forces  are  evaluated by Eq.(15). The notation used i s  
shown i n  Fig. 2 .  We w i l l  embed the  element  corotational  coordinate  within t h e  
element so tha t  the z - axis always  connects  nodes 1 and 2.  Euler-Bernoulli 
beam theory w i l l  be used, so tha t   the   ve loc i t ies  through the  depth  are com- 
pletely  defined by veloci t ies  of the  middle surface V;; and V- Y 

so tha t  

where commas denote different ia t ion  with  respect   to   the subsequent  variables. 

The veloci ty   f ie ld  7- w i l l  be  approximated by l inear  shape  functions, and 
the  transverse  velocity f l e l d  of the  midline by cubic  shape  functions so  that  x 
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where t h e   r i g i d  body p a r t  of the   ve loc i ty   f ie ld   has  been omitted  Since it 
causes no s t r a in .  The nodal  velocities  associated  with  deformation  are  thus 

and the  conjugate  nodal  forces 

where m are  the  nodal moments.  Combining Eqs.(l8) and (19),  w e  obtain I - 
0. - 

DX 
= -  "x2 - 5 [(65-4)01 + (65-2)(b21 R 

Equation 115) then gives 

where A is the  cross-sectional area of  the beam. 

The remaining  nodal  forces  can be obtained from equilibrium 

- - 
fxl - -?x2 

(24) 
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HIGHER ORDER VELOCITY 

STRAIN EXPRESSIONS 

The v e l o c i t y   s t r a i n   e x p r e s s i o n ,  E q . ( z 2 ) ,  is exac t  for  a beam only when t h e  
element 's   midline is  coinc ident  w i t h  the   x-axis ,  which  corresponds t o  the  chord 
between t h e  t w o  nodes. I f  the beam element is  i n i t i a l l y   c u r v e d  or i f  it de- 
forms  enough so tha t  the   mid l ine   d i sp l aces   subs t an t i a l ly  from the x-axis, these  
equat ions w i l l  be i n  error because  of  the  following effects: 

1. The x and axes are no longer   coincident  w i t h  the  midline  and i t s  
normal , r e spec t ive ly ,  so Eqs . (18) are i n  error because vx and v are 
not   a long  the  midl ine and i t s  normal. Y 

2. The  volume in t eg ra t ion   neg lec t s  t h e  deformation  of  the beam relative 
t o  t h e  x ax i s .  

In   o rde r  t o  accoun t   fo r   t he   f i r s t   e f f ec t   w i thou t   t r ans fo rming  between co- 
ord ina te   sys tems  wi th in   the   e lement ,   h igher   o rder   ve loc i ty   s t ra in   re la t ions   a re  
developed,  using t h e  same b a s i c  ideas employed i n  [41 f o r   c o r o t a t i o n a l  stretch 
theories .   For  t h i s  purpose,  the  displacement of t h e   m i d l i n e   r e l a t i v e   t o  the 
chord, or x a x i s  , i s  denoted  by Y. It w i l l  be assumed t h a t  

- = O ( e )  
Y 
R U,- = o(e) 

X 
y,-- = o(e2) 

xx 

and  accuracy of order  e2 i s  assumed; terms of h igher   o rder   and   cer ta in   o ther  
terms are neglected.  Because of space   l imi ta t ions ,  w e  omit t h e   d e r i v a t i o n ,  
and   g ive   on ly   t he   f i na l   r e su l t  

K 1 + 

For  an  axisymmetric  shell  element, w e  l e t  x cor respond  to   the  radial  coor- 
d ina t e ,  r ,  and €I be the   c i rcumferent ia l   coord ina te .  The corresponding  re la t ions 
are 
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A 

DX = d - Y K ~  
- 

1 

where is the  hoop v e l o c i t y   s t r a i n .  The terms dl  and K~ are i d e n t i c a l  t o  
those f o r   t h e  beam, E q s  . (26) , while  e 

vX 

d 2 = - - -  
- (V cos a + v s i n  a) 

r r X Y 

1 
Y I X  V - COS a +  - [ r ( c o s  a - Y I X  s i n  a) - Y s inacosdV - (28b) 

- 1 
2 X , X  r 

K = -  
Y ? X  

L 1 

where r is  the   cur ren t   rad ia l   coord ina te   o f  a p o i n t ,  a the  current  angle  between x and x ,   a s  shown i n   F i g .  2.  For a l l  app l i ca t ions  w e  have  considered so f a r  , 
t he  second terms i n   t h e   e x p r e s s i o n s   f o r  K and tc2 have  been  insignif icant .  1 

EXAMPLES 

Resul ts  are g iven   for  a clamped r i n g  shown in   F ig .  3 ,  f o r  which  experimen- 
t a l  r e s u l t s  are r e p o r t e d   i n  [ll]; numerical   resul ts   have  been  reported  in   [3] .  
E x p l i c i t  time i n t e g r a t i o n   w i t h   t h e   c e n t r a l   d i f f e r e n c e  method  and a lumped m a s s  
matr ix  w a s  used. The material model i s  e l a s t i c - p l a s t i c   w i t h  a Mises y i e l d  con- 
d i t i o n  and isotropic  hardening.  Because  the  width  of  the  ring i s  l a rge  compared 
t o  i t s  th i ckness ,   p l ane   s t r a in  w a s  assumed in   the  z-direct ion.   Furthermore,   the  
compressibi l i ty   of   the  elastic s t r a i n s  w a s  cons idered   negl ib le ,  so t h e   h e i g h t  h 
of   the  cross-sect ion w a s  modified  by 

h = hoRo/R 

for   bo th   the   ve loc i ty   s t ra in   computa t ions ,   Eq . ( l8b) ,  and the   nodal   force  cornput- 
t a t ions ,   Eq . (23 ) .  The nodal   forces  w e r e  obtained by numerical   quadrature  using 
f ive   po in ts   th rough  the   th ickness ,  and two poin ts   a long   the   l ength   wi th  a trape- 
zo ida l   ru le .  

The displacements for the  midpoint of t h e  clamped r i n g  are compared f o r  
p lane  stress and  plane  s t ra in ,   wi th   and  without   the area cor rec t ion   of   Eq . (29) ,  
i n  T a b l e  1. As can   be   seen ,   the   e f fec ts  of the   p lane   s t ra in   assumpt ion  are 
very  significant,   changing the r e s u l t  by  20%. The e f f ec t   o f   t he   t h i ckness  cor- 
r e c t i o n  is  less pronounced bu t   neve r the l e s s   no t   neg l ib l e .  
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TABLE 1 

EFFECTS OF ASSUMPTIONS ON MIDPOINT 

DEFLECTION  OF CLAMPED R I N G  

Assumptions Midpo in t   de f l ec t ion   ( i n )  

P l a n e   s t r a i n ,   v a r i a b l e   t h i c k n e s s  

P l a n e   s t r a i n ,   c o n s t a n t   t h i c k n e s s  

Plane stress, va r i ab le   t h i ckness  

Plane stress, cons t an t   t h i ckness  

2 -99 

3.06 

3 -43 

3.53 

The p lane   s t r a in   so lu t ion   w i th   t h i ckness   co r rec t ion   compares  best wi th  
the  experiment ,  so w e  w i l l  restrict  a l l  subsequen t   compar i sons   t o   t h i s  case. 
The time h i s to ry   o f   t he   midpo in t  i s  compared t o  t h e   e x p e r i m e n t   i n   F i g ;  4.  The 
repor ted   exper imenta l   resu l t s   exhib i t   cons iderable   snapback ,   which  are absen t  
i n   t he   computa t ions .   F igu res  5 and 6 compare t h e  deformed  shape  and s t r a i n  
t ime   h i s to r i e s   w i th   t he   expe r imen t .   Overa l l ,   t he   ag reemen t  is  q u i t e  good  and 
comparable t o   t h a t  of t h e   n u m e r i c a l   r e s u l t s   r e p o r t e d   i n  [ 3 ] .  
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DEFORMED 
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Fig. 1. Deformed  and undeformed beam element showing 
element  corotational  coorgiGates x,? and local  
corotational  coordinates x,y. 

Y I  

Fig. 2. Nomenclature 
for  nodal  forces 
and veloci t ies .  

I node 1 x ,  ( r )  
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P’ 
E =  
Y ’  

2.61 X I bs-secz/ in4 
1.04 X lo7 psi J!n (!l/l0) 
0.3 

EXPERIMENT MODEL 

Fig. 3. Experiment [ l l ]  and model f o r  clamped r ing  problem. 

- 1  X EXPERIMENT 

4 t  - COMPUTATION 

0 

TIME (MILLISECONDS) 

Fig. 4. Comparison of computed centerpoint  (node 1 i n  
Fig.3) ver t ical   d isplacement   with  experimental  
results i l l ] .  
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0 i 2 3 4 5 6 

X - A X I S  

Fig. 5 .  Deformed configuration of clamped ring 
compared t o  experimental r e s u l t s   [ l l ] .  

7, I 
I I 

0 1 2 3 0 2 3 
TIME (MILLISECONDS) TIME (MILLISECONDS) 

Fig. 6. Comparison of computed strains  against  experi- 
mental resu l t s  [ll]; angle i n  parenthesis i s  for 
the  experimental  record. 
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Institute  of  Industrial  Science,  University  of  Tokyo 

Tatsumi  Sakurai 
Japan  Advanced  Numerical  Analysis  Inc. 

SUMMARY 

A microcomputer  system  being  developed  by  the  authors  is  introduced.  The 
parallel  effort  of  compiling  a  series  of  compact  finite  element  analysis  pro- 
grams  enables  the  execution  of  most  computation  on  inexpensive  microcomputers. 
The  system  is  practically  maintenance  free  and  can  be  sustained  by  individual 
laboratories  of  standard  scale  in  the  educational  or  academic  environment. 
AS for  the  programs,  -FEMN  is  discussed  in  some  detail.  The  program  is  an 
extended  version of the  original  linear  analysis  program FEM4 and  is  being 
tested  for  application  to  problems  with  material  nonlinearities. 

INTRODUCTION 

The  finite  element  analysis  has  reached  the  stage  where  the  execution 
of  the  structural  analysis  is  often  considered  routine.  This  is  the  case 
particularly  in  the  industrial  environment.  However, so far  the  execution 
has  relied  largely  on  expensive  hardware  or  costly  remote  time-sharing 
services.  The  role  of  the  giant  main-frame  or  super-computer  in  the  solu- 
tion  of  large  scale  problems,  e.g.  the  inelastic  analysis  of  pressure  vessels 
and  piping  systems  operated  at  elevated  temperature,  will  not  be  changed 
even  in  future  applications.  But  it  has  been  an  ambition  of  engineers  to 
perform  a  great  portion  of  their  analysis  jobs  on  inexpensive  and  hopefully 
personal  computers  and  thus  be  freed  from  being  slave  to  the  large  systems. 
The  development  of  microcomputer  and  associated  finite  element  analysis  pro- 
grams  is  a  breakthrough in realizing  this  goal. 

The  microcomputer  system  should  be  stand  alone  and  almost  maintenance 
free so that it can  be  sustained  by  individual  laboratories  especially  in 
the  educational  or  academic  environment.  The  medium-sized  engineering 
problems  should  be  solved  within  a  reasonable  time  limit  and  the  system 
could  also  be  adapted  to  multi-purpose  usages,  i.e.  interactive  compilation 
of  fundamental  computation  routines,  data  management,  preparation  of  engi- 
neering  documents  and  reports,  letter  writing  and so forth. In the  present 
paper  a  compact  system  is  introduced  which  is  being  built  by  the  authors. 
In  a  parallel  effort, a series of microcomputer  finite  element  analysis 
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programs  are  being  developed.  The  original  version.is FEM4 which is an 
elastic  analysis  program  of  plane  stress,  plane  strain  .and  axisymmetric 
problems  (ref. 1, 2) .  It is  extended'to  the  nonlinear  analysis  program FEMN 
by  an  addition  of  the  restart  capability.  The  results  of  this  innovation 
are  manifold.  By  an  incorporation  of  user  defined  subroutine WXLN speci- 
fying  material  data,  problems  with  material  nonlinearities  can  be  easily 
handled.  Mesh  division  can  be  modified  in  the  course  of  computation  and 
thus  the  simulation  and/or  pursuit,  for-example,  of  crack.development  in 
fracture  mechanics  becomes  easier. In the  following,  some  details  of 
the  microcomputer  system  and  the  program  organization  of FEMN are  described 
with  the  example  solution  of  a  simple  pilot  problem. 

MICROCOMPUTER  SYSTEM  STRUCTURE 

Figure 1 illustrates  the  structure  of  the  microcomputer  system  almost 
completed  at  the  time,  May  1980,  of  writing  this  paper.  Zilog 280 is  used 
as  the 8 bit CPU  (Central  Processing  Unit),  and  the  capacity  of  main  memory, 
which  is  composed  of  a  ROM  (Read  Only  Memory)  and  several RAM (Random  Access 
Memory)  boards,  totals 64 kilobytes.  The  transfer  of  control,  address  and 
data  between  the  components  of  the  system  is  performed  exclusively  via S-100 
bus.  For  the.purpose  of  connection  and  communication  a  number  of  interfaces 
are  installed.  The 8" floppy  disk  drive  constitutes  the  secondary  memory  for 
mass  storage  and  provides  the  housing  of  a  compound  of  operating  system,  sup- 
porting  language,  finite  element  analysis  and  other  computer  programs.  The 
standard  disk  operating  system  CP/M  is  used so that  the  problems  in  software 
exchange  can  be  avoided.  At  the  moment,  program  languages  are  BASIC  and 
FORTRAN.  It  should  be  noted  that  two 240K dual  disk  systems  are  combined  for 
commanding  four  floppy  disk  assemblage,  although  a  dual  system  kit  suffices 
to  perform  the  standard  operation.  The  authors  intend  to  shorten  the  overall 
analysis  time  by  an  adoption  of  parallel  processing  that  uses  several  CPUs 
and  disk  drives.  The  contemplated  inclusion  of  the  hard  disk  will  increase 
the  capacity  of  secondary  memory  to  a  great  extent  and  may  open  the  way to a 
novel  system  based  on  16  bit  microprocessors. 

Among  the  peripherals  for  1/0  (Input/Output)  purposes  shown  in  figure 1, 
CRT  unit  and  printer  are  the  essentials.  The  function  of  CRT  unit  is  manifold, 
as  it  is  used  for  input of the  data,  interactive  operation  of  the  system, cow 
pilation  of  program  segments  and/or,subroutines,  temporary  display  of  the  com- 
puted  results,  preparation  of  documents,  e.g.  the  users'  manual,  and so on. 
The  prepared  data,  the  completed  list of the  programs  and  the  results  of  com- 
putation  can  be  plugged  into  the  printer  for  permanent  recording.  Plotter 
and  graphics  terminal  are  optional,  but  both  are  useful  for  the  finite 
element  modeling  and  post-processing  graphics,  e.g.  automatic  mesh  genera- 
tion,  model  editing  and  plotting  the  computed  results. 

The  general  purpose  programs  compiled  to  date  for  mounting  on  the  micro- 
computer  system  are  COMPOL,  COMPOS,  CALM,  FEM4,  MICRO-FEM  and  FEMN.  The 
first  two,  written  in  BASIC,  are  essentially  the  microcomputer  version  of 
'COMPOsite  material  computation'  being  developed  by  Tsai  on  a  magnetic  card 
calculator  (ref.3, 4 ) .  In the  program  names, L and S stand  for  the  laminate 
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and  sandwich  composi te   s t ructure   respect ively.  CALM i s  a ma t r ix   ope ra t ion  
program  which is  b a s i c a l l y   a n   i n t e r a c t i v e   v e r s i o n   o f   t h e   f i r s t  group  opera- 
t i o n s   i n   t h e   p r o g r a m  CAL ( r e f . 5 ,  6 ) .  FEM4 and its microcomputer  version 
MICRO-FEM are p r e p a r e d   t o   s o l v e   t h e   p l a n e  stress, p l a n e   s t r a i n  and axisym- 
metric problems  and  then  converted  to FEMN to   conduc t   non l inea r   ana lys i s .  
Restart c a p a b i l i t y  is implemented so t h a t   t h e   i n e l a s t i c  material behavior  
can  be  handled. Complementary modi f ica t ion  i s  an   add i t ion  of t h e   u s e r  
de f ined   sub rou t ine  MTUN s p e c i f y i n g   t h e  material propert ies   which were for -  
merly  input   through  e lement   data   cards .   The  users  who t a i l o r   t h e   s u b r o u t i n e  
MTRLN a c c o r d i n g   t o   t h e i r  material d a t a  can p e r f o r m   c o n v e n i e n t l y   t h e - i n e l a s t i c  
analysis   on  the  microcomputer .  An example  of MTRLN is  shown i n   t h e   f o l l o w i n g  
s e c t i o n .  

ORGANIZATION OF  NONLINEAR  ANALYSIS  PROGRAM FEMN 

FEMN is composed of two p a r t s  FEMAB and FEMCD which are concerned  with 
t h e   p r e p a r a t i o n   o f   i n p u t   d a t a   f i l e  and the   so lu t ion   p rocedure  of t h e  prob- 
l e m .  The  major  feature  of  the  program is t h a t  i t  uses  dynamic s t o r a g e  
a l loca t ion   wh ich  means the   comple te   e l imina t ion   of  common statement .   This  
func t ion  is  performed  by  subroutines OPENS, CLOSE, PSEEK and POOLWT as shown 
i n   f i g u r e s  2a  and  2b. 

The program  organization  of FEMAB is  shown i n   f i g u r e  2a. It reads  t i t l e  
a n d   c o n t r o l   c a r d s   f i r s t .  Then follows  the  input  of  node  and  element dat'a  from 
which t h e   i n d e x   o r   i n t e g e r   j o i n t   a r r a y  is  formed  and s t o r e d  on  IFIL2.  IFIL2 
accommodates a l s o   l o a d   d a t a  and  IFIL6 is  e s s e n t i a l l y  a s torage  of   input   and 
processed  element  data.   The  formation  of  strain-displacement  matrix16  from 
t h e   d a t a   i n   I F I L 6  is  performed  by  subroutine MGN and t h e   r e s u l t  is  w r i t t e n  
on   IFIL3  to   be   read   in  FEMCD s u b s e q u e n t l y .   F i n a l l y   t h e   i n i t i a l   d i s p l a c e m e n t  
da t a   (u sua l ly   t he   c l ea red   ze ro   d i sp l acemen t )  are s t o r e d  on  IFIL5 fo r   subse -  
quent   updat ing by the   so lu t ion   ob ta ined   t h rough  FEMCD. In   t he   fo l lowing   t he  
p r i n c i p a l   f u n c t i o n s  of i n d i v i d u a l   s u b r o u t i n e s   i n   F E W  are summarized. 

PINPG Preparatory  segment   for   subrout ine INPUTG 
INPUTG Input   genera t ion ,   read   input   da ta   in   sequence   and   compi le   index   or   in -  

RNODE Read node  data 
RELEM Read e lement   da ta   inc luding  material s p e c i f i c a t i o n  number and  element 

MKIDX Make index   fo r   a t t r i bu t ing   merg ing   po in t   and   coord ina te   t o   i npu t   and  

t e g e r   j o i n t   a r r a y  

th ickness  

processed   e lement   da ta   and   a l so  create index  for   skyl ine  assemblage  of  
s t i f f n e s s   m a t r i x  

RLOAD Read loading  s tep  sequence  and  nodal   force  and/or   displacement   data  

OPENS Open s t o r a g e  area f o r   a r r a y  from  bottom  of POOL i n  main memory 
CLOSE Close a p a r t   o r  whole  s torage area by   de le t ing   unused   a r ray  
PSEEK Search for a r r a y   d a t a  by its name 
POOLWT Debug write w a n t e d   a r r a y   d a t a   i n  POOL f o r   i n s p e c t i o n  

PMGN Prepara tory   segment   for   subrout ine  MGN 
MGN Command sequent ia l   genera t ion   of   e lement  matrices 
ISOBMN Generate   e lement   s t ra in-nodal   displacement   matr ix  B f o r  3-8 v a r i a b l e  
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node  parametr ic  element 

o f   a s s o c i a t e d   J a c o b i  matrix J 

en te r ing   d i sp l acemen t   da t a   o f   p reced ing   computa t ion   fo r  restart run  

STDMA Evaluate  components  of  strain-nodaldisplacement matrix B and  determinant 

DISPI I n i t i a l i z e   d i s p l a c e m e n t s ,  by e i t h e r   c l e a r i n g   f o r   i n i t i a l   r u n   o r  

Af t e r   t he   execu t ion   o f  FEMAB described  above,  the  next  program  block FEMCD 
is  c a l l e d  by t h e  main  of FEMN. Functions  of FEMCD, whose o rgan iza t ion  i s  shown 
i n   f i g u r e  2b, are the   format ion   and   assemblage   of   the   e lement   s t i f fness  matrix 
and  subsequent ly   the  solut ion  of   the  problem. Material d a t a  are inpu t  via the .  
user   def ined   subrout ine  MTRLN and   t hen   t he   s t r e s s - s t r a in  matrix D fo r   each  
incrementa l   s tage   o f   loading  is e v a l u a t e d   i n   s u b r o u t i n e  D " K N .  FEMCD starts 
i ts  operat ion  by a t ransfer   o r   read ing   of   the   da ta   s tored   on   IFIL5,   which  are 
t i t l e  o f   t he   p rob lem,   i n t ege r   da t a ,   i n i t i a l   c l ea red   d i sp l acemen t   and   l oad   da t a  
o r   t h e i r   v a l u e s   o b t a i n e d   i n   p r e c e d i n g   s t e p   o f   l o a d i n g   s e q u e n c e .  The stress- 
nodal   displacement   matr ix  s and   e l emen t   s t i f fnes s   ma t r ix  K are formed i n  sub- 
r o u t i n e  S " K N ,  t h e  l a t t e r  b e i n g   s t o r e d   i n   t h e   a p p r o p r i a t e   l o c a t i o n s   i n   t h e  
o v e r a l l   s t i f f n e s s   m a t r i x  by r e f e r r i n g   t o   t h e   i n d e x   p r e p a r e d  on  IFIL2.  IFIL3 
and 4 are used as t h e  seesaw e x t e r n a l  memory fo r   i n t ege r   da t a   and   t he   e l emen t  
s t ra in-d isp lacement   mat r ix  B. S k y l i n e   o r   p r o f i l e  active column  method o f   da t a  
a c q u i s i t i o n  is used   fo r   s av ing  area i n   t h e  main memory. Therefore.  a l l  sub- 
r o u t i n e s   p r e f i x e d  by c a p i t a l s  SK i n  SOLVEN,  SKDCNP etc . ,  take advantage  of 
t he   sky l ined   fo rm  o f   s to rage   fo r   t he   man ipu la t ion   o f   da t a .  Newton-Raphson 
i t e r a t i o n   p r o c e d u r e  i s  i n c o r p o r a t e d   i n   s u b r o u t i n e  SOLVEN, some de ta i l s   o f   which  
are d i scussed   i n   t he   nex t   s ec t ion   conce rned   w i th   t he   so lu t ion   o f   an   e l emen ta ry  
sample  problem. The following  summarises  the  function  of  individual  sub- 
r o u t i n e s   r e l e v a n t   t o  FEMCD. 

PSOLVN Prepara tory   segment   for   subrout ine  SOLVEN 
SOLVEN S o l v e   o v e r a l l   s t i f f n e s s   e q u a t i o n   f o r  unknown nodal  displacement  and com- 

p u t e   r e a c t i o n  a t  constrained  node;  i terative procedure i s  incorpora ted  
i n   t h i s   s o l v e r   f o r   n o n l i n e a r   p r o b l e m s  

loading  

mat r ix  K, s y n t h e s i z e   o v e r a l l   s t i f f n e s s   m a t r i x  by r e f e r r i n g   t o  
merging   po in t   index   s tored   on   IFIL2,   and   a l so   de te rmine   equiva len t  
noda l   fo rce   f rom  cu r ren t  stress d a t a   f o r   e q u i l i b r i u m   c h e c k  

by s k y l i n e  method 

VECTWN P r i n t   o u t  computed d isp lacement   and   reac t ion   vec tor  a t  each   s tage   o f  

S " K N  Evaluate   s t ress-nodal   displacement   matr ix  S and   e l emen t   s t i f fnes s  

SWRITE Write components f o r  debugging  of active columns . in   mat r ix  S s t o r e d  

BWRITE Write components  of  vector B for   debugging 
SKDCNP Cholesky  decomposition  of  symmetric  posit ive  definite  matrix by sky l ine  

SKXMLU Mult iply,   add  and/or   subtract   matr ix   components   in   skyl ine  s torage 
CONVCK Check convergence  of  solution  being  obtained  by Newton-Raphson i terat ive 

SKFWD Forward e l imina t ion  by s k y l i n e  method 
SKBKW Backward s u b s t i t u t i o n  by s k y l i n e  method 

D " K N  Evaluate  components  of  stress-strain  matrix D of   cons t i t u t ive   equa t ion  
MTRLN User def ined   subrout ine   spec i fy ing  e las t ic  a n d   i n e l a s t i c  material prop- 

method 

procedure 

er t ies 
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STRSUM  Add s t r e s s / s t r a i n   i n c r e m e n t s   t o   u p d a t e   v a l u e s   o f   s t r e s s / s t r a i n  
PRINST Compute p r i n c i p a l  stresses a n d   t h e i r   d i r e c t i o n s  
STWRN P r i n t   o u t   s t r e s s / s t r a i n   s o l u t i o n s  a t  r e s p e c t i v e  Gauss i n t e g r a t i o n  

po in t s ,   t oge the r   w i th   coo rd ina te s   o f  Gauss p o i n t s  

F in i t e   e l emen t   u sed   i n  FEM4 as w e l l  as i n  FEMN is 4-8 var iable   nodes  para-  
metric q u a d r i l a t e r a l   w i t h   t h e   f o l l o w i n g   i n t e r p o l a t i o n   f u n c t i o n s   ( r e f . 7 ) .  

For  corner  nodes 1-4 

f o r  midedge  nodes 5-8 

N5 = s5, 

N4 = S4 - (N7+N8)/2 

N 7 =.S-,, N8 = S8 

By c o a l e s c i n g   a n   e d g e   o f   t h e   q u a d r i l a t e r a l   t o  a s i n g l e   p o i n t  a t r i a n g u l a r  ele- 
ment i s  produced. It can   be  shown ( r e f .8 ,  9)  t h a t   t h e   r e s u l t i n g  element coin- 
c i d e s  w i t h  t he   conven t iona l   cons t an t   s t r e s s / s t r a in   e l emen t  when the   p r imary  
quadr i l a t e ra l   e l emen t  is  four-noded. The  number of i n t e g r a t i o n   p o i n t s   i n  
Gauss quadra ture   can   be   one   to   f ive  by f i v e   i n   a c c o r d a n c e   w i t h   t h e   u s e r s '  
s p e c i f i c a t i o n .  

The i n p u t   c a r d   o r   d a t a   s e q u e n c e   i n  FEMN is summarized i n   t a b l e  I. An 
example of i npu t   da t a   p repa ra t ion  as w e l l  as the   u se r   de f ined   sub rou t ine  MTRT.,N 
i s  i l l u s t r a t e d   i n   t h e   n e x t   s e c t i o n .  

SOLUTION  OF  SAMPLE  NONLINEAR  PROBLEM AND REMARKS 

AS a sample  problem,  nonlinear  behavior  of a composite  block  specimen 
shown i n   f i g u r e  3 is analysed.  The b l o c k   c o n s i s t s   o f   a n   i d e a l l y   p l a s t i c  ele- 
ment 101  and a nonl inear   one  501  with a nega t ive   s lope  segment a t  a l a r g e  
s t r a i n  as d e p i c t e d   i n   f i g u r e  4 based  on  the material da ta   o f   f i gu re  3. Loading 
sequences are summarized i n   f i g u r e  3 and   t he   so l id   cu rve   . i n   f i gu re  4 is t h e  
theo re t i ca l   l oad -d i sp lacemen t   r e l a t ion  of t h e   b l o c k   u n d e r   a x i a l   t e n s i l e   l o a d -  
ing.  It is no ted   t ha t   t he   l oad ing   cond i t ion   i n   numer i ca l   ana lys i s  is given by 
the   fo rce   i nc remen t   fo r   s t ep  1-3 and 7-9, w h i l e   i n   s t e p  4-6 it is given by t h e  
displacement  increment.  

Table  I1 is t h e  image of i n p u t   c a r d s   p r e p a r e d   f o r   t h e   s o l u t i o n   o f   t h e  
sample   p rob lem  and   s e rves   t o   i l l u s t r a t e   s imp l i c i ty   o f  the d a t a   p r e p a r a t i o n .  
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Specifically  table I1 is  concerned  with  the  first  loading  sequence, i.e. 
step  1-3. The  solution  for  consecutive  loading  conditions,  step 4-6 and  7-9 
in the  present  example,  is  obtained  by  restarting  the  execution  with  the 
renewal  of  input  data  and  the  use  of  .the  solution  obtained  in  the  preceding 
step  and  stored on an  appropriate  file.  Table  I11 is the  subroutine KCRLN 
written  for  this  sample  problem.  The  program  FEMN  is  versatile  because  the 
user  can  easily  tailor  the  subroutine MTRNL so that  it  characterizes.particu- 
lar  nonlinear  properties  of  the  material of interest. It must  be  emphasized 
that  the  anisotropic  material  behaviors  are  easily  incorporated in the  program. 

Figure  5  depicts  solution  convergence in the  sample  problem.  The  itera- 
tive  procedure  that  the  present  version  of  FEMN  employs  is  a  modified  Newton- 
Raphson  method  with  incorporation of equivalent  nodal  force { Fa). It  com- 
pensates  the  imbalance  of  force  equilibrium  at  the  nodes  and  is  given  by 

J 
where IF) denotes  the  prescribed  nodal  force, [B] and { a )  are  the  strain-nodal 
displacement  matrix  and  the  current  stress.  Convergence  is  satisfactory  in  the 
present  example  and  it  should  be  noticed  that  the  computed  results  lie  on  the 
theoretical  curve  exhibiting  sharp  turning  points. 

Test  of  convergence  in  case of the  large  scale  problem,  sophistication  of 
iterative  procedure  and  extension  of  the  program  to  three  dimensions  are  the 
next  steps  that  are  to  be  taken.  Moreover,  the  development of parallel  pro- 
cessing  and  the  installation  of  suitable  hard  disk  will  increase  the  speed  and 
capacity  of  the  system. 
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TABLE I INPUT  DATA  FORMAT  OF  FEMN 

(1) TITLE  CARD  (18A4) 
COL  1-7.2  PROBLEM  IDENTIFICATION  ETC  BY  ALPHANUMERIC  CHARACTER 

(2)  CONTROL  CARD  (2311) 
COL 1 =O AXISYMMETRIC 

=1 PLANE  STRAIN 
=2 PLANE STRESS 

2  NUMBER OF INTEGRATION  POINTS  (1-5)  FOR  GAUSSIAN  QUADRATURE 
3* =O INITIAL  START 

>O RESTART 
4- 5* NUMBER  OF  ITERATION  IN NEWTION-WHSON METHOD 
6-20  BLANK 
21 >O DEBUG  WRITE  IN  MODULE  INPUG 
22 >O DEBUG  WRITE  IN  MODULE  MG 
23 >O DEBUG  WRITE  IN  MODULE  SOLVEN 

(3)  NODE  HEADER  CARD (A4) 
COL 1-4 ' NODE ' 
(4) NODE  DATA  CARDS  (A4,  16,  2F10.0,  lox,  F10.0,  lox,  211) 
COL 1- 4 ' NODE ' 

7-10  NODE  NUMBER 
11-20  X (R)  COORDINATE 
21-30  Y (Z) COORDINATE 
41-50  OBLIQUE  ANGLE  (DEG)  OF  LOCAL  COORDINATE 
61 =1 X-DOF  CONSTRAINED  OR  X(R)-DISPL  GIVEN 

=o OR BLANK FREE OR X(R)-LOATI GIVEN 
62 =1 Y-DOF  CONSTRAINED  OR  Y(Z)-DISPL  GIVEN 

=O OR SLANK FREE  OR  Y(Z)-LOAD  GIVEN 

(5)  ELEM  HEADER  CARD  (A4) 
COL 1- 4 ' FLEM' 
(6) ELEM  DATA  CARDS  (A4,  16,  815,  IS*,  215*,  F8.0) 
COL 1- 4 ' ELEM' 

7-10 ELEMENT NUMBER 
11-15  1ST  NODE  NO. 
16-20  2ND  NODE  NO. 
21-25  3RD  NODE  NO. 
26-30  4TH  NODE  NO. 
31-  35  5TH  NODE  NO. 
36-40  6TH  NODE  NO. 
41-45  7TH  NODE  NO. 
46-50 8TH NODE NO. 
51-55*  MATERIAL  SPECIFICATION  NUMBER 
56-65*  FOR  EXTENSION OF PROGRAM  BY  USERS 
66-73  ELEMENT  THICKNESS 
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(7) LOAD  HEADER  CARD (A4) 
COL 1- 4 'LOAD' 

( 8 )  LOAD  OR  DISPLACEMENT  STEP  CARD  (A4,  16,  6F10.0) * 
COL 1- 4 ' STEP' 

5-10  STEP  NUMBER 
11-70  FOR PROGRAM EXTENSION 

(9)  LOAD  OR  DISPLACEMENT  DATA  CARD  (A4,  16,  2F10.0) 
COL 1- 4 'LOAD' 

5-10 NODE  NUMBER  ON  WHICH  GIVEN  LOAD  OR  DISPLACEMENT  IS  APPLIED 
11-20 X(R) GIVEN  NODAL  FORCE  OR  DISPLACEMENT 
21-30 Y ( Z )  GIVEN  NODAL  FORCE  OR  DISPLACEMENT 

(10) END CARD (A4) 
COL 1- 3  'END' 

* INDICATES  ADDITION  OR  MODIFICATION  APPLIED  TO  LINEAR  ANALYSIS  PROGRAM  FEM4 
AND/OR  MICRO-FEM 

TABLE I1 INPUT  DATA  IMAGE  OF  SAMPLE  PROBLEM  OF  FIGURE  3 

2-ELEMENT NONL I NEAR  MODEL TEST 
22 8 
NODE 
NODE 
NODE 
NODE 
NODE 
NODE 
NOflE 
NODE 
NODE 
ELEM 
ELEM 
ELEM 
LOAD 
STEP 
LOAD 
L c m  
LOAD 
STEP 
LOAD 
L m r I  
LOAD 
STEP 
L c m  
LOAD 
LOAD 
END 
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C 
C 

C 

C 

2100 

C 
3000 

3100 

C 

C 
EO00 

E 2 0 0  

C 
7000 

7200 

7 4 0 0  
3000 

TABLE 111 EXAMPLE OF USER DEFINED SUBROUTINE m R L N  

SUBRBUTINE  MTRLNIKK,  IK, EK, ITER,  ISTP:) ........................................................... . I K I 4 1  MFlTERIFlL I D E N T I F I C f l T I B N  NUMBER . E K I I K I 9 I 1  CBMPUTED STRf l IN VFlLUE . E K I I K ( I j 1  CBRRESPBNDING  STRESS  VRLUE . ITER=O,  RBUTINE  DETERMINES TFINGENT MBDULUS . ITER)O,  ITERRTES STRESS  FBR COMPUTED STRFIIN VRLUE ........................................................... 
DIMENSION K K ( 1 1 ,   I t < ( l ) , E K ( l I  
M I D = I K I 4 l  
I K S = I K ( 8 1  
I t<9=IK(9 : )  
I F (  ITER. GT. 0:) GB TB EO00 
:+*-+:% SLBPE OF STRESS-STRRIN CURVE $:+-:+:* 
IF(MID.GT.01 G 0  TO 3000 

Et<(2:)=0. 3 
I F ( E K ( I K 9 ) .  GT. 1O.OE-35 GB TB 2100 
El( ( 1 =2. OE4 
GB TO 9000 
EK!l)=O.O 
GB TB 3000 

E K ( 2 ) = 0 . 3  
I F ( E K I I K 9 ) .  GT. 3.OE-3:) GB TB 3100 
Et< < 1 ) =2.OE4 
GB TB 3000 
IF (EKCIK9T .  GT. E. OE-3:) GB TB 3200 
EN! 1 )=O. 0 
GB  TO 3000 
E K ( l ) = - l . O E + 4  
GB TB 3000 
*:*:-** STRESS VFILUE F O R  CBMPUTED STRRIN *e-:+* 
IF(MID.GT.0)  GB T 0  7000 

I F  (EK ( I K3:). GT. 10. OE-3:) GB TB E200 
E K I   I K E )  =2. OE4:+EK (1  K3:) 
GB TB 9000 
EK( IKE1=200 .0  
GB TB 3000 

IF(EKI IK3: l .GT.   3 .OE-31 GB TB 7200 
EK I I KS1=2.  DE4*EK ( I K3:) 
GB Ti3 3000 
I F C E K I   I K 3 S .  GT. 6.OE-35 GB TB 7 4 0 0  
EK ( I K I  :I =60.0 
GB TB 3000 
EKI IK8: )=120.   O- l .OE4*EK( IK3)  
RETURN 
END 

**-+*: PERFECTLY  PLRSTIC :+*-:+:+ 

:+*-:+:* NBNL 1 NERR MflTER 1 flL *::+-:+* 

*:*:-*:+ PERFECTLY  PLRSTIC :+*:-:+:* 

**-*:+ NBNL 1 NEnR MRTER 1 R L  **:-:+:+ 
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Figure 1.- Structure of microcomputer system. 
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(b) FEMCD. 

Figure 2.- Organization of FEMAB and FEMCD. 
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MODULUS HL OF MATERIALS, kgf /mm2 
I I I 

SPECIFIED LOADING SEQUENCE 

TOTAL LOAD  DISPLACEMENT 
INCREMENT I INCREMENT 

2 I 1 2 x 1 0 3  I - I I STRAIN RANGE I Hi OF ELEMENT 
1 0 1  5 0 1  I I 1 3 I 1 z X 1 o 3  - 

7 -12 x103 - 
8 

- -12 x ~ ~ 3  9 

- -12 x103 

Figure 3.- Composite block of nonlinear material. 
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Figure 4.- Nonlinear material properties 
and load-displacement curve. 
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Figure 5.- Convergence of solution. 
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